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Abstract

The handling of exclusion in multimodal retrieval remains
an underexplored challenge with significant implications
for the accuracy and reliability of information retrieval sys-
tems. Although existing approaches have advanced mul-
timodal understanding, they typically lack mechanisms to
explicitly process exclusion. To address this, we propose
a novel model ExclMM (pronounced as “exclaim”) that
leverages disentangled representations to effectively handle
exclusion in multimodal retrieval. Our approach enables
precise differentiation between the presence and absence of
specific elements in an image, outperforming existing meth-
ods. To evaluate our model, we construct a dataset, Ex-
cluCOCO that pairs exclusion-based queries with ground-
truth images sourced from MSCOCO. This dataset serves as
a robust benchmark for assessing exclusion comprehension
in multimodal contexts. By explicitly incorporating exclu-
sion, our work advances multimodal retrieval by introduc-
ing both a model tailored for exclusion-aware retrieval and
a benchmark to facilitate future research.

1. Introduction

Exclusion is a fundamental aspect of human language and
cognition, allowing us to specify not just what is present in
a scene but also what is absent. It plays a crucial role in
how we communicate and reason about the world, enabling
us to express exclusion, contradiction, and prohibition. In
natural language processing (NLP), exclusion based query
handling is increasingly explored due to its utility in tasks
such as sentiment analysis, question answering, and textual
entailment [28, 31]. Although multimodal retrieval mod-
els aim to retrieve relevant images given a text query, they
inherently involve challenges in aligning textual and visual
semantics. Exclusion adds an additional layer of complex-
ity, as it requires models not only to identify relevant con-
tent but also to recognize and explicitly account for the ab-

Figure 1. Top-3 retrieved images for the query “room without
a TV” using CLIP (top row) and ExclMM (bottom row) embed-
dings. CLIP fails to retrieve images that do not contain “TV” ob-
ject, while ExclMM is able to (detailed evaluation in Section 5).

sence of certain elements in an image. For instance, a query
such as “Find the images of a room without a TV” demands
that the retrieval system not only recognize the concept of
a room but also ensure the explicit absence of a TV. This is
fundamentally different from standard retrieval tasks, where
models primarily focus on detecting the presence of objects
rather than reasoning about their exclusion. Most existing
retrieval approaches, particularly those based on deep em-
beddings, struggle with such queries because they rely on
holistic representations in which semantic attributes are en-
tangled. This entanglement makes it challenging to explic-
itly distinguish, suppress, or exclude specific concepts [1].
Addressing this limitation is essential for developing mod-
els capable of nuanced, exclusion-aware reasoning.

To address this challenge, we propose a
disentanglement-based multimodal retrieval model,
ExclMM, that enables explicit reasoning about the pres-
ence and absence of objects in images. Disentangled
representations aim to separate factors of variation in data,
providing greater control and interpretability [26]. We use
textual captions as weak supervision signal to guide the
disentanglement of corresponding image representations,
ensuring that different sets of dimensions capture distinct



semantic components shared between the image and text.
By structuring the representation in this way, we achieve
fine-grained control over individual attributes, allowing
targeted modifications. We leverage this property for
exclusion-aware retrieval by training the model to suppress
or attenuate the dimensions corresponding to excluded
features, ensuring that retrieval aligns with the intended
query semantics. For example, for the query “room without
a TV”, traditional models like CLIP [22] tend to retrieve
images containing both a room and a TV, as they mainly
focus on the presence of objects rather than exclusion
(Fig. 1, top row). In contrast, our approach explicitly
suppresses the dimensions associated with the TV while
preserving the representation of the room, ensuring that
the retrieved images align with the intended exclusion
constraint (Fig. 1, bottom row).

ExclMM learns sparse, disentangled multimodal embed-
dings by enforcing structured factorization of information
across different latent dimensions. Unlike traditional mod-
els [14, 22], with tightly coupled textual and visual features
in a dense embedding space, our approach explicitly sepa-
rates them, allowing selective manipulation of query seman-
tics. Specifically, for a given query, the model decomposes
its representation into distinct feature components, making
it possible to selectively suppress dimensions correspond-
ing to excluded concepts while preserving relevant ones.

To evaluate our model, we built ExcluCOCO, a bench-
mark dataset specifically designed for exclusion-aware mul-
timodal retrieval. This dataset comprises exclusion-based
queries paired with corresponding ground truth images,
leveraging existing labeled images from MSCOCO [16].
Unlike traditional datasets such as MSCOCO, which mainly
focus on retrieving images based on the presence of ob-
jects, our dataset ensures that models are explicitly assessed
on their ability to exclude specified elements, making it a
valuable resource for studying exclusion in retrieval tasks.
While the recently proposed CC-Neg dataset [23] provides
exclusion-based queries, it lacks ground truth images, mak-
ing it unsuitable for evaluating retrieval performance. In
summary, our work makes the following key contributions:
• A disentanglement-based retrieval model ExclMM, that

explicitly separates visual and textual features, allowing
fine-grained control over embeddings to effectively han-
dle exclusion queries. By structuring representations in
a way that enables selective suppression of negated at-
tributes, our approach improves retrieval accuracy for
exclusion-aware queries.

• A benchmark dataset ExcluCOCO, to support rigorous
evaluation of exclusion-aware multimodal retrieval mod-
els. This dataset provides ground truth for exclusion-
based retrieval tasks along with labels for included and
excluded items, offering a valuable resource for future re-
search in this underexplored area.

2. Related Work
Exclusion handling is a relatively new research area, with
numerous emerging studies spanning natural language pro-
cessing (NLP), computer vision, video retrieval, and mul-
timodal systems. In NLP, several works have focused on
exclusion-aware textual retrieval and language modeling.
The NevIR benchmark [28] evaluates neural retrieval mod-
els’ ability to process negation by using contrastive doc-
ument pairs that differ only in negation. Similarly, Ex-
cluIR [31] introduces training and evaluation datasets de-
signed to enhance retrieval models’ performance on exclu-
sionary queries. Early studies [5, 17, 18] explored the chal-
lenges associated with negation, often treating user queries
as logical expressions of Boolean operations to model ex-
clusion. In image retrieval, [29] discuss the difficulties
posed by exclusion and introduces a framework for evalu-
ating exclusion-based queries in keyword-driven image re-
trieval. Recent efforts in video retrieval have also tackled
the complexities of exclusion and negative queries. For ex-
ample, [2] proposed the NA-VMR framework to filter out
irrelevant queries, while [27] leveraged soft negative cap-
tions to enhance CLIP’s ability to handle negated queries.
Multimodal foundation models have also been assessed for
their effectiveness in processing exclusion. Research by
[25] has shown that while instruction tuning and scaling
model size provide some improvements, negation compre-
hension remains a persistent challenge. Addressing this is-
sue, [34] systematically evaluates the susceptibility of state-
of-the-art multimodal large language models to negation-
based gaslighting. Furthermore, [23] introduced a dataset
consisting of positive image-caption pairs along with their
negated captions and proposes CoN-CLIP, a framework that
modifies the negated caption embeddings to be distinct from
both the positive caption embeddings and the corresponding
image embeddings.

While some progress has been made in exclusion-aware
retrieval, it remains an emerging area, particularly in mul-
timodal contexts. Many existing methods struggle with ex-
plicitly handling exclusion, highlighting the need for struc-
tured approaches to improve exclusion comprehension. Ad-
ditionally, the lack of well-curated datasets with explicit
ground truth for exclusion queries poses a major challenge,
underscoring the importance of developing better bench-
marks for training and evaluation. One promising direc-
tion for improving exclusion-aware retrieval is the use of
disentangled representations, which have been widely stud-
ied for their ability to separate underlying factors of varia-
tion in data. Unlike traditional deep embeddings [14, 22],
where features are entangled and difficult to manipulate,
disentangled representations allow for explicit control over
individual attributes [1, 4, 26]. This property makes them
particularly suited for exclusion-aware retrieval, where the
goal is to ensure that retrieval models not only capture rel-
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aggregated to obtain d-dimensional sentence embeddings for each query c. In step 3, a biencoder-
decoder model is trained to produce d-dimensional sparse image and text embeddings by taking

(b) The multimodal disentangled representation model from

queries, and exclusion queries are first passed through the
frozen model to obtain their sparse embeddings. These

model to generate refined representations for exclusion queries.

stage 1 is used as a frozen model to generate sparse embeddings.
The pretrained embeddings of all images, positive

(a) Three step process to create a multimodal disentangled representation model. In step 1, d-
dimensional sparse word embeddings are generated from their m-dimensional pretrained
embeddings for all the words in the vocabulary. In step 2, these sparse word embeddings are

their pretrained embeddings as input and using the sparse sentence embeddings from step 2            embeddings are then processed by the Exclusion Encoder
as mask to enforce dimension level disentanglement.
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Figure 2. Illustration of the two-stage training process of ExclMM. In Stage 1, a multimodal disentangled model is trained on CLIP
embeddings of images and their text captions. In Stage 2, this trained model is used as a frozen model to generate sparse, disentangled
embeddings for positive and exclusion queries along with their ground-truth images. These embeddings are then processed by an Exclusion
Encoder to create refined embeddings for exclusion queries.

evant attributes but also systematically suppress excluded
ones. Early works such as β-VAE [6], FactorVAE [9],
and Relevance FactorVAE [10] primarily focused on dis-
entangling representations in images. Some studies have
extended these techniques to multimodal settings [11, 13],
creating disentangled representations for both images and
text. However, these approaches are often restricted to syn-
thetic or relatively simple datasets with a limited number
of factors of variation. More recent work has explored
disentanglement in real-world multimodal datasets for re-
trieval [32]. Additionally, disentangled representations have
been leveraged for attribute-conditioned retrieval and condi-
tional similarity search [7], recommendation systems [15],
and image-to-image translation [12], demonstrating their
broader applicability.

3. Methodology
We propose a two-stage training approach for generating
representations tailored to exclusion-based queries, as illus-
trated in Fig. 2. In the first stage, we develop a bi-encoder-
decoder model that produces sparse, disentangled embed-
dings for both images and text. These embeddings are
structured such that similar dimensions are activated with
high values for semantically related concepts. In the sec-
ond stage, we freeze the disentanglement model and train an
encoder that operates on the sparse text query embeddings
generated by the disentanglement model. This encoder
learns to construct representations for exclusion queries, en-
abling the retrieval of images that explicitly satisfy the ex-
clusion constraint. We now describe these steps in detail.

Stage 1: Multimodal Disentangled Model training
This training stage follows a three-step pipeline to learn
sparse and disentangled multimodal embeddings.
Step 1: Learning Sparse Word Embeddings We first ob-
tain sparse and disentangled word embeddings for all the
words in the train vocabulary V by transforming pre-trained
m-dimensional word embeddings, such as GloVe [21]
(which captures semantic relationships between words),
into a higher-dimensional space (d > m) using a sparse
autoencoder, following the same approach as followed by
[24]. Given a word embedding w ∈ Rm, we pass it through
a sparse autoencoder [19], defined as:

zw = fenc(w; θenc), ŵ = fdec(zw; θdec) (1)

where zw ∈ Rd is the latent representation of the word,
that is encouraged to become sparse by the training objec-
tive (i.e., sparsity is induced via optimization rather than an
a priori property), and ŵ is the reconstructed word embed-
ding. The model is trained using following loss functions.
1. Reconstruction loss(RL) is the average loss in recon-
structing the input representation from learned representa-
tion and reconstructed word embeddings.

RL =
1

V
∑
v∈V

∥ŵv −wv∥22 (2)

We adopt an L2 loss as it provides stable gradients and
better preserves the geometry of the original embeddings.
In contrast, an L1 loss made the representations excessively
sparse and caused loss of important semantic information.
2. Average sparsity Loss(ASL) penalizes deviations of the
observed average activation value from the target activation



value for a given hidden unit across a dataset.

ASL =
∑
h∈H

max(0, (ρh,V − ρ∗h,V))
2 (3)

where ρ∗h,V denotes the desired sparsity level for hidden
unit h, and ρh,V is the actual sparsity, computed as the av-
erage activation of unit h in all words of the vocabulary V .
3. Partial Sparsity Loss(PSL) penalizes the values that are
neither close to 0 nor 1 and pushes them close to 0 and 1,
adding more sparsity to the embeddings.

PSL =
1

V
∑
v∈V

∑
h∈H

(zhwv
∗ (1− zhwv

)) (4)

where H refers to the set of hidden units in the latent layer.
Finally, the d-dimensional latent representations zw serve
as the sparse disentangled word embeddings. The repre-
sentations obtained using this sparse autoencoder method
exhibit inherent interpretability and disentanglement at the
dimension level. Similar approach has also been explored
in several recent works [8, 20].
Step 2: Constructing Sentence Embeddings Once we get
the d-dimensional embeddings for all words in the vocab-
ulary, we construct sentence embeddings for captions by
computing the weighted average of the word embeddings
for a given image caption c = (w1, w2, . . . , wn):

zc =
1

n

n∑
v=1

zwv (5)

This ensures that the sentence embeddings retain the inter-
pretability and disentangled properties of the sparse word
embeddings.
Step 3: Learning Multimodal Sparse Embeddings We
employ a bi-encoder-decoder architecture to project both
image and text representations into a shared sparse latent
space. Given an image i and its corresponding caption c, we
first obtain their k-dimensional CLIP embeddings, denoted
as clipi and clipc. These embeddings are then projected
into a d-dimensional space using separate encoders(fenc

text
and fenc

img) and subsequently reconstructed back to k dimen-
sions using decoders(fdec

text and fdec
img).

Ed
i = fenc

img (clipi) , clipi′ = fdec
img

(
Ed

i

)
(6)

Ed
c = fenc

text (clipc) , clipc′ = fdec
text

(
Ed

c

)
(7)

To enforce sparsity and disentanglement, we create d-
dimensional masks(maski and maskc) (similar to that used
in [3, 32]) that combines the top t active dimensions of
the image/text embeddings(Ed

i and Ed
c ) using the active di-

mensions of the sentence embedding zc. This ensures that
the disentangled structure from the sentence embeddings is
transferred to the multimodal representations

maski = zc OR Topt

(
Ed

i

)
(8)

maskc = zc OR Topt

(
Ed

c

)
(9)

sparc, spari ∈ Rd are the final sparse multimodal repre-
sentations obtained by element-wise multiplication:

spari = maski ⊙ Ed
i (10)

sparc = maskc ⊙ Ed
c (11)

To further align image and text embeddings, we optimize a
softmax-based contrastive loss.:

Lcontrast = − 1

2N

(
N∑

a=1

log
exp(sparac · sparai /τ)∑N
b=1 exp(spar

a
c · sparbi/τ)

+

N∑
a=1

log
exp(sparai · sparac /τ)∑N
b=1 exp(spar

a
i · sparqb/τ)

)
(12)

where sparai and sparac denote the ℓ2-normalized sparse
image and text embeddings respectively for the ath sample
in a batch of size N , and τ is a temperature scaling param-
eter (taken as 1 in our case).

The final training objective combines this contrastive
loss with pair of reconstruction losses between initial and
reconstructed clip embeddings for image and text:

Lc
rec = ∥clipc′ − clipc∥22 , Li

rec = ∥clipi′ − clipi∥22 (13)

The final loss is given by:

L = Lc
rec + Li

rec + Lcontrast

This formulation ensures that the learned embeddings are
not only sparse and disentangled but also well-aligned
across modalities, leading to interpretable multimodal rep-
resentations (see Section 5 for examples of dimension-level
disentanglement). Sparse embeddings provide the disen-
tangled structure needed for reliable exclusion reasoning.
By expanding the dimensionality and enforcing sparsity,
Stage 1 assigns different semantic concepts to distinct, min-
imally overlapping axes, unlike dense CLIP embeddings
where concepts remain entangled. This factorization allows
exclusion to be implemented by simply suppressing the co-
ordinates associated with the excluded concept. Our abla-
tions confirm that removing sparsity or relying solely on
dense embeddings leads to mixed activations and unreliable
exclusion performance.

Stage 2: Training the Exclusion Query Encoder
After obtaining sparse, disentangled multimodal em-
beddings from the frozen model, we introduce an
exclusion-aware encoder to refine representations for
exclusion queries. Specifically, it takes the embeddings of
positive queries, exclusion queries, and their corresponding
ground-truth images and optimizes them to generate dis-
tinct embeddings for positive and exclusion based queries.



Input Notation. Using the frozen model, we gener-
ate the following embeddings:
sparcp: Disentangled Embedding of the positive query.
sparcx: Disentangled Embedding of the exclusion query.
sparip: Disentangled Embedding of the positive image.
sparix: Disentangled Embedding of the exclusion image.

Encoder Training: The encoder Fθ takes the disen-
tangled text embeddings generated from the frozen model
embeddings as input and generates refined embeddings for
the positive and exclusion queries as:

exccp = Fθ(sparcp), exccx = Fθ(sparcx) (14)

Loss Function: The training proceeds with the following
two components of loss function,
1. Softmax-based Contrastive Loss: The model learns to
align exclusion queries with their corresponding exclusion
images while ensuring separation from other images. The
contrastive loss similar to that used in the Stage 1 training
is used between embeddings of exclusion queries generated
from the exclusion encoder(exccx) and sparse embeddings
of their corresponding ground truth images generated from
the frozen disentanglement model(sparix):

Lc = − 1

2Q

(
Q∑

a=1

log
exp(excacx · sparaix/τ)∑Q
b=1 exp(exc

a
cx · sparbix/τ)

+

Q∑
a=1

log
exp(sparaix · excacx/τ)∑Q
b=1 exp(spar

a
ix · excbcx/τ)

) (15)

where excacx and sparaix denote the ℓ2-normalized exclusion
query and image embeddings respectively for the ath query
in a batch of size Q, and τ is the temperature parameter (set
to 1 in this case).
2. Triplet Loss for Positive and Exclusion Queries: This
loss ensures that a positive image embeddings sparip is dis-
tant to exclusion query embedding exccx compared to the
positive query embedding exccp and is given by:

Lt = max(0, d(sparip, exccp)

−d(sparip, exccx) +m)
(16)

where d(a, b) denotes the distance between a and b in the
embedding space, computed using cosine distance. The
margin m defines a minimum separation between the dis-
tances that encourage meaningful separation while allowing
gradient flow. The overall loss function is a weighted sum
of the contrastive and triplet losses:

L = λ1Lc + λ2Lt (17)

where λ1, λ2, are hyperparameters balancing the loss terms.
The final loss ensures that there is proper alignment between
the exclusion query-image pairs and the exclusion queries
are also further from the positive images in the embedding
space.
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Figure 3. Illustration of the inference process of ExclMM, where
the CLIP embeddings of the exclusion query(clipc′ ) and the posi-
tive and exclusion ground-truth images(clipi,clipi′ ) are passed to
the frozen model to obtain their sparse disentangled embeddings
(sparc′ ,spari and spari′ respectively). The exclusion query
embedding(sparc′ ) is then passed through the trained Exclusion
Encoder to generate a refined exclusion embedding(excc′ ).Results
show that while clipc′ is initially closer to clipi than to clipi′ , af-
ter processing through the model, excc′ becomes closer to spari′

than to spari demonstrating that the exclusion query embedding
effectively captures the intended representation.

Inference
As illustrated in Fig. 3, the inference process begins with an
exclusion query, which is first converted into its CLIP em-
bedding. This embedding is then passed through the frozen
model to obtain a sparse representation. To refine it further,
the trained exclusion encoder processes the sparse embed-
ding, generating the final query representation:

excquery = Fθ(sparquery) (18)

This embedding can then be used for retrieval, ensuring
proper alignment between exclusion queries and their cor-
responding images.

4. Dataset Construction
We introduce ExcluCOCO, a new multimodal dataset de-
signed to support exclusion-based retrieval. This dataset
is derived from the well-established multimodal benchmark
MSCOCO[16]. Our dataset construction methodology en-
sures that each exclusion-based query is paired with a set of



Positive Caption from the dataset:
A child and woman are cooking in

the kitchen.

Labels corresponding to the caption:   
     kitchen, child, woman

Exclude include pairs:
Exclude: woman

Include: [kitchen, child]

Exclusion query generated by ChatGPT:
              A child is cooking in the kitchen without a woman.

Prompt: Negate words in the exclude set along with its adjoining or helping nouns and
verbs while keeping the include set unchanged, using negation words like not, without, or

no, without significantly altering the sentence's meaning or rephrasing nouns. 
Examples: Sentence: a toilet with a teddy bear sitting on the seat. Exclude: bear Include:

toilet Output: a toilet without a teddy bear sitting on the seat.
Sentence: A child and woman are cooking in the kitchen. Exclude: woman Include:

kitchen, child"

a.                                                        
                                                                                     
                                                                                     
                                                                                     
                                                                                     
                                                                                     
                                                                                     
                                                                                     

          

Ground truth images for positive & exclusion queries:
1st image is the positive ground truth image having labels
child, kitchen and woman, 2nd image is exclusion ground
truth image including child & kitchen while excluding woman.

Figure 4. Overview of ExcluCOCO dataset construction process, where captions from MSCOCO are used to form inclusion-exclusion
pairs, modified via ChatGPT, and paired with ground truth images that satisfy the exclusion constraints.

ground truth images that adhere to the specified inclusion
and exclusion constraints.
4.1. Generating Exclusion Queries
For MSCOCO, we leverage the text captions associated
with each image to construct exclusion-based queries. The
process involves the following steps:

1. Label Extraction: Each image in MSCOCO dataset
is associated with a set of labels corresponding to the ob-
jects present in the image. We extend this label set by ex-
tracting frequently occurring words from the captions, en-
suring a comprehensive representation of image content. A
dictionary is created by mapping each image to its corre-
sponding label set.

2. Candidate Label Selection: From each caption,
we identify words present in the label set. For instance,
given the caption:“A child and woman are cooking in the
kitchen”, the extracted labels are women, kitchen, and child.
From this list, we select one label to exclude and the remain-
ing labels to include, forming an inclusion-exclusion pair.
Multiple such combinations are generated for each caption.

3. Ground Truth Image Sampling: For each
inclusion-exclusion pair, we retrieve candidate images from
the dataset. An image is considered a valid ground truth for
a given query if it contains all the labels in the inclusion
set and it does not contain the label in the exclusion set.
We retain only the pairs for which such ground truth im-
ages are available in the dataset. Since the sampling of the
label pairs is conditioned only on the availability of ground-
truth images that contain the included object(s) and exclude
the specified object(s), the class distribution in ExcluCOCO
naturally mirrors that of MSCOCO.

4.2. Constructing Exclusion Queries
Once we have the positive query (caption), the inclusion-
exclusion label pairs, and the corresponding ground truth

images, we generate the exclusion queries using ChatGPT.
The overall dataset construction process is illustrated with
an example in Figure 4. We follow a prompt engineer-
ing based approach for query generation in which the orig-
inal caption is provided to ChatGPT along with the corre-
sponding inclusion-exclusion labels. A structured prompt
instructs ChatGPT to generate a exclusion query that re-
tains the same structure as the original caption, includes the
words from the inclusion list and excludes the word from
the exclusion list, using appropriate negation constructs
(e.g., ‘without’, ‘missing’, ‘except for’,‘but not’). Few-shot
prompting is employed, providing multiple handcrafted ex-
amples to improve the quality of generated queries.

This systematic approach ensures that ExcluCOCO effec-
tively captures the semantics of exclusion in a multimodal
setting while maintaining high-quality ground truth annota-
tions. As a result, we obtain 26,932 exclusion query-image
pairs from the MSCOCO training set and 3,009 pairs from
the test set. On average, queries involve 1–2 included ob-
jects and 1 excluded object, and query lengths are compara-
ble to MSCOCO captions (on average 10 words). Figure 5
presents a few examples from the constructed dataset. In
the first example, the positive query is “A person feeding a
cat with a banana”. The first image in the row (highlighted
in a green box) is the positive ground truth image, depicting
a person’s hand feeding a banana to a cat. The correspond-
ing exclusion query is “A cat with a banana but not a per-
son feeding it”. The ground truth images for this exclusion
query are shown in the purple box above it, where each im-
age contains a cat and a banana but no person, demonstrat-
ing that the person is the excluded concept while cat and
banana are included. Similarly, in the other example, the
included-excluded pairs are surfboard (included) and per-
son (excluded) respectively. The ground truth images con-
form to these inclusion-exclusion constraints, ensuring that



Positive Query : A person feeding a cat with a banana

Exclusion Query : A cat with a banana but not a person feeding it.

Positive Query : A man sitting on the beach behind his surfboard.

Exclusion Query : A surfboard on the beach with no man sitting behind it.

Figure 5. Examples from ExcluCOCO dataset, the first image of each row corresponds to the image for the Positive query while the rest of
the images are the ground truth images for the Exclusion query. The Positive & Exclusion queries are given below the images in each row

the excluded concept is absent while the included concepts
remain.

5. Experiments
5.1. Quantitative Evaluation
We evaluate our model’s performance on exclusion-based
retrieval tasks using exclusion queries from the Exclu-
COCO dataset. We compare it against CoN-CLIP [23], an
exclusion-based retrieval model that creates separate em-
beddings for exclusion queries, as well as widely used
vision-language representation models such as CLIP [22],
BLIP [14], SIGLIP [30] and the universal multimodal re-
trieval model, VISTA [33]. The results in Table 1 show
that our model outperforms all baselines, with CoN-CLIP
performing particularly poorly. This is because CoN-CLIP
is trained to generate separate embeddings for positive and
exclusion queries, positioning exclusion query embeddings
farther from their corresponding positive query ground truth
than from the positive queries of these images. How-
ever, it does not explicitly align exclusion query embed-
dings with the correct exclusion-ground-truth images, lead-
ing to suboptimal retrieval performance. Additionally, the
results demonstrate that despite their effectiveness in tra-
ditional text-image retrieval, multimodal models such as
CLIP, BLIP, SiIGLIP and VISTA struggle with exclusion
queries. Although the dataset contains only one exclusion
per query, our model is capable of handling more than one
exclusion as well.

5.2. Ablation Study
We conduct an ablation study on both loss functions and
Stage 1 design choices, with results in Table 2. Using
only the triplet loss leads to near-collapse, since queries are
pushed away from positives but not aligned with exclusion

Dog: 334, 912, 276, 178, 394, 459, 860, 627, 436, 723, 421, 268, 196, 499, 791,

266, 959, 568, 563, 293]

Cat: [912, 276, 587, 394, 340, 847, 990, 219, 117, 266, 100, 293, 279, 499, 204, 

548, 112, 391, 459, 357]

Dog and Cat: [912, 436, 334, 276, 383, 251, 376, 529, 246, 96, 459, 178, 570,

851, 176, 421, 279, 142] 

Figure 6. Top-4 images retrieved for each query using disentan-
gled image and text embeddings, considering only the top 10%
active dimensions. Active dimension lists are shown alongside
queries: common dimensions between “Dog and Cat” and “Dog”
are in green, those shared with “Cat” are in blue, and dimensions
active in all three are marked in red. This illustrates dimension-
level disentanglement across modalities and concepts.

targets. Using only contrastive loss also hurts performance,
showing the two losses are complementary: contrastive
aligns queries to exclusion images, while triplet sharpens
separation from exclusion-relevant negatives. For architec-
ture, removing the zero-concept mask (zc) reduces perfor-
mance, confirming its role in preserving included concepts
while suppressing excluded ones. Skipping Stage 1 and ap-
plying Stage 2 directly to CLIP embeddings corresponds to
our CLIP-based ablations: frozen CLIP embeddings per-
form worse than our full method, while fine-tuning CLIP
on exclusion queries gives AP@1 ≈ 0.017 and joint fine-
tuning collapses further. These results show that naive fine-



Table 1. Results for exclusion query to image retrieval. We report numbers for CoN-CLIP, VISTA, BLIP, CLIP, and ExclMM. Statistically
significant improvements over CoN-CLIP, VISTA, BLIP, CLIP, SIGLIP are indicated by superscripts 0, 1, 2, 3 and 4, respectively (measured
by paired t-Test with 99% confidence)

Method AP@1 AP@5 MRR@5 MRR@10 NDCG@5 NDCG@10 Hits@5 Hits@10

CoN-CLIP 0.0588 0.0580 0.0919 0.1032 0.0586 0.0603 0.1517 0.2380
VISTA 0.23460 0.27840 0.38890 0.40800,2 0.27600,2 0.28950,2,3 0.65430,3 0.79400,2,3

BLIP 0.18960 0.27950,1 0.36950 0.38680 0.26770 0.28150,3 0.66090,1,3 0.79200,3

CLIP 0.26330,1,2 0.28000,1,2 0.40970.1,2 0.42780,1,2 0.28190,1,2 0.28140 0.65000 0.78140

SIGLIP 0.20330,2 0.27100 0.37210,2 0.39040,2 0.26390 0.27880 0.65070,3 0.78530,3

ExclMM 0.50400,1,2,3,4 0.43720,1,2,3,4 0.68650,1,2,3,4 0.68660,1,2,3,4 0.46510,1,2,3,4 0.43200,1,2,3,4 0.99910,1,2,3,4 1.00,1,2,3,4

Table 2. Ablation with different combination of losses and architectural design. ExclMM with both pair of losses and disentanglement
based frozen model shows the best performance.

Method AP@1 AP@5 MRR@5 MRR@10 NDCG@5 NDCG@10 Hits@5 Hits@10

ExclMM 0.5040 0.4372 0.6865 0.6866 0.4651 0.4320 0.9991 1.0
w/o Lt 0.4650 0.4076 0.6205 0.6312 0.4321 0.4153 0.8763 0.9529
w/o Lc 0.0163 0.0170 0.0299 0.0354 0.0169 0.0177 0.0565 0.0983
with CLIP base 0.2633 0.2800 0.4097 0.4278 0.2819 0.2814 0.6500 0.7814
w/o zcmask 0.4313 0.3885 0.5822 0.5956 0.4108 0.4004 0.8245 0.9219
CLIP finetuned on exclusion queries 0.0322 0.0142 0.0434 0.0510 0.0170 0.0161 0.0707 0.1602
CLIP finetuned on exclusion and positive queries 0.0079 0.0118 0.0255 0.0312 0.0115 0.0110 0.0594 0.1023

tuning mixes inclusion and exclusion, while Stage 1 disen-
tanglement creates sparse, concept-aligned dimensions that
enable reliable masking and strong performance.

5.3. Disentanglement

The multimodal disentanglement model trained in the first
stage generates sparse embeddings for images and text,
where disentanglement occurs at the dimension level. This
means that specific subsets of dimensions capture similar
concepts in image-text data, with these dimensions exhibit-
ing higher activation values. We illustrate this in Figure 6 by
taking three queries “Dog”, “Cat”, and “Dog and Cat” and
generating their embeddings using the trained multimodal
disentanglement model. We identify the top-10% most ac-
tive dimensions in each embedding and display them along-
side the queries. Next, we retrieve images based on their
disentangled embeddings, selecting those that share the
same active dimensions. As shown in the figure, the same
set of dimensions remains active and highly valued across
text and image embeddings, demonstrating alignment be-
tween the two modalities at both the overall embedding and
individual dimension levels. Furthermore, the embedding
of “Dog and Cat” shares active dimensions with the em-
beddings of “Dog” and “cat”. In the figure, the dimen-
sions common to “Cat” and “Dog and Cat” are highlighted
in green, those shared between “Dog” and “Dog and Cat”
in blue, and dimensions present in all three embeddings in
red within the “Dog and Cat” dimension list. This confirms
that similar concepts activate similar dimensions across em-
beddings. Using this property, exclusion queries can be ef-
fectively handled by removing the active dimensions asso-
ciated with the concept to be excluded, demonstrating the
power of such disentangled embeddings.

Figure 7. Failure case example for ExclMM. It retrieved the image
inside the red box, although query excludes people appearing in
the image.

6. Conclusion
In this work, we propose a disentanglement-based multi-
modal retrieval model that explicitly handles exclusion by
suppressing features of excluded concepts, allowing fine-
grained control over embeddings for inclusion–exclusion
queries. We also introduce a new benchmark dataset tai-
lored for exclusion-aware retrieval. Our method advances
the state-of-the-art in this setting and highlights exclusion
as a crucial step toward human-like multimodal reasoning.
Unfortunately, our work is not without limitations – for
instance, Figure 7 illustrates a failure mode for ExclMM.
Future work can explore extending disentanglement tech-
niques to more complex negation scenarios and generaliz-
ing the approach to broader multimodal reasoning tasks.
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