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Increasingly, special-purpose search engines are being built to enable the retrieval of document-
elements like tables, figures, and algorithms[Bhatia et al. 2010; Liu et al. 2007; Hearst et al. 2007].
These search engines present a thumbnail view of document-elements, some document metadata
such as the title of the papers and their authors, and the caption of the document-element.
While some authors in some disciplines write carefully tailored captions, generally, the author of a
document assumes that the caption will be read in the context of the text in the document. When
the caption is presented out-of-context as in a document-element-search-engine result, it may not
contain enough information to help the end-user understand what the content of the document-
element is. Consequently, end-users examining document-element search results would want a
short “synopsis” of this information presented along with the document- element. Having access
to the synopsis allows the end-user to quickly understand the content of the document-element
without having to download and read the entire document as examining the synopsis takes a
shorter time than finding information about a document element by downloading, opening and
reading the file. Furthermore, it may allow the end-user to examine more results than they would
otherwise. In this paper, we present the first set of methods to extract this useful information
(synopsis) related to document-elements automatically. We use Naive Bayes and support vector
machine classifiers to identify relevant sentences from the document text based on the similarity
and the proximity of the sentences with the caption and the sentences in the document text that
refer to the document-element. We compare the two classification methods and study the effects
of different features used. We also investigate the problem of choosing the optimum synopsis-size
that strikes a balance between the information content and the size of the generated synopses.
A user study is also performed to measure how the synopses generated by our proposed method
compare with other state-of-the-art approaches.
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1. INTRODUCTION

Authors use a number of document-elements for a variety of purposes like report-
ing and summarizing experimental results (plots, tables), describing a process (flow
charts) or presenting an algorithm (pseudo-code). A document-element is defined
as an entity, separate from the running text of the document, that either augments
or summarizes the information contained in the running text. Figures, tables and
pseudo-codes for algorithms are the most commonly used document-elements in
scientific literature and are sources of valuable information. For example, in bi-
ology, figures and their related textual descriptions account for as much as 50%
of a whole paper [Futrelle 2004]. In Table I, we show the numbers of different
document-elements present in all the papers published in last five years in some
major Computer Science conferences'. From these examples it can be observed
that document-elements constitute a substantial part of scientific literature. Often-
times, the most important experimental results and ideas in an article are presented
using non-textual document-elements.

Recently, significant efforts have been made to utilize and extract information
present in document-elements. Science Direct? offers a “Figures/Tables” preview
feature for many of the articles in its database. CiteSeerX?, a major computer
science digital library, has introduced a table search feature in addition to normal
document search. TableSeer [Liu et al. 2007], a specialized search engine allows
end users to search for tables in digital documents. We have proposed a search
engine for finding algorithms in scientific articles [Bhatia et al. 2010]. Likewise,
a specialized search engine for biology documents, BioText Search Engine [Hearst
et al. 2007, offers end-users the capability to search for figures and tables in the
documents.

A study by Sandusky and Tenopir [2008] on the usefulness of such document-
element search engines reveals that while these specialized search engines help the
users in identifying quickly the documents relevant to their information needs, users
generally find it hard to completely understand the document-elements presented
to them without examining the context in which they were used in the associ-
ated document. Demner-Fushman et al. [2009] also discuss the need to augment
image captions in papers with related text so as to help readers understand the
image in its right context. The special-purpose document-element search engines
described above generally return a list of document-elements and a snippet con-
structed from the documents to provide this contextual information. In most
cases, document-element captions and sentences in the document that mention the
document-element are used as snippets. In our interaction with computer scientists,
chemists, and environmental geo-scientists, we have observed that the end-user of-
ten wants to examine more information than is available in the snippets because he
or she can not always interpret the information content of document-elements by
examining just the snippets as illustrated by Figure 1, which shows a figure along
with its associated caption. The end-user would find it hard to interpret results
just by looking at a figure because the figure does not contain the full information

IThese numbers were obtained by parsing methods as described in section 3.
2http://www.sciencedirect.com
Shttp://www.citeseerx.ist.psu.edu
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Figures Tables Algorithms
Conference No. of Papers
Total Average Total Average Total Average

SIGIR 925 1990 2.15 1916 2.07 75 0.08
SIGMOD 608 4303 7.08 688 1.13 301 0.5
STOC 406 466 1.15 34 0.08 74 0.18
VLDB 538 5198 9.66 788 1.46 287 0.53
WWW 957 3735 3.9 1429 1.49 142 0.15

Table 1. Distribution of different document-elements in different conferences in last
five years (2005-2009).
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Fig. 3. Results comparison of TSVM and PTSVM.

Fig. 1. A sample figure and its caption. Figure courtesy [Chen et al. 2003].

about what the lines and different points in it actually mean. Even though the
associated caption and legend help in understanding the information presented in
a figure, they hardly provide enough details to fully understand and interpret the
figure.

As another use case, consider a chemist, who is searching for experimental results
for the dissolution rate of kaolinite under certain conditions. The chemist wants to
quickly find the results that were reported by earlier papers and compare his results
with previously reported results. He would want to quickly search the digital library
for documents, find the figures or tables that present the results, collect the results,
extract the data and then analyze it. While searching in a large digital library
that presents the chemist with a ranked list of documents along with the associated
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figures and tables outlining experimental results, the chemist would like to avoid
false positives. That is, the chemist would not want to open the documents that
contain figures and tables reporting results that he or she does not exactly need.
Can we provide this end-user with a basic understanding of a non-textual document
element by summarizing the textual information describing the document element
and presenting it succinctly to the end-user? If we can do so, the end-user would
not have to examine a number of documents by opening them. Thus, such a
summary would be of great use in reducing the work that needs to be done by
the information-seeker. This additional information can be provided in a manner
similar to what is used by state of the art modern search engines like MSN Bing?.
When a user hovers over a search result, the synopsis can be shown in a pop-up
box. Thus, this additional information can be provided without compromising the
valuable real estate on the screen.

In this work, we show a way to automatically extract information related to
document-elements from document text. We refer to this extracted information as
a synopsis. Availability of a concise and relevant synopsis may help save the end-
users’ time when they are examining search results to find something that satisfies
their information needs. In Figure 2, we show the synopsis generated by our method
for the figure shown in Figure 1. The semantics of Figure 1 becomes much clearer
upon reading the synopsis. Thus, our tool increases the degree of automation of
information seeking and improves the productivity of end-users.

Extracting a synopsis for a document-element from a digital document involves
filtering information related to the document-element from the rest of the docu-
ment. Solving this problem accurately is easy if we understand the semantics of
the text automatically. However, state-of-the-art techniques of natural language
processing and statistical text processing still fall short in fully understanding the
semantics of text documents. Additionally, good synopsis generation involves mak-
ing a judgment call regarding the level of detail that may be useful to an end-user.
If we generate a very large synopsis, it will be comprehensive, but the users’ needs
of finding information quickly will not be met. If we generate a very short synopsis,
the user will not understand the document-elements clearly. We aim at striking a
balance between these conflicting needs using automated synopsis-generation meth-
ods.

Our algorithm finds the reference text in the document, i.e., text that refers to
document-elements, e.g., “In Figure 3, we show ...”, and then assigns scores to other
sentences in the text depending upon their (a) similarity to the reference text and
caption and (b) proximity to the reference text. A synopsis is then constructed out
of these sentences based on a cost-benefit analysis that depends upon the marginal
utility and marginal cost of including a sentence in a partially constructed synopsis.

Our work has the following key contributions.

—We propose a method for extracting document-element related information from
digital documents automatically. We treat the problem as a special case of
query-biased summarization where the document-element itself is the query. We
adopt machine learning techniques and develop a novel feature set for identifying

4http://www.bing.com/
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Fig. 3 illustrates the training results of TSVM and PTSVM on Tutorial dataset. The solid
line is the final hyperplane found by PTSVM and the dashed line is the final hyperplane
found by TSVM. As shown in Fig. 3, the wrong estimation for value of N is responsible for
bad performance of TSVM. This problem is successfully avoided in PTSVM. We can also find
out that the training time of PTSVM is much shorter than that of TSVM. This is mainly
due to the fact that TSVM need to successively increase the value of C and calculation has
to be done for every C value.

Fig. 2. Information extracted by our method for the figure described in Figure 1.

document-element related sentences.

—We propose a simple model for sentence selection that tries to strike a balance
between the information content and the length of the synopsis. The top-ranked
sentences selected by this model are finally included in the synopsis.

—We validate our proposed methods using empirical evaluation.

The rest of the paper is organized as follows. Section 2 provides an overview of
the related work. Section 3 describes the methods used to identify relevant sen-
tences from the documents and various features and classification methods used.
Section 4 explains the sentence selection strategy for variable-length synopses gen-
eration. Section 5 describes the dataset used, experiments performed and discussion
of results. Section 6 concludes the paper.

2. RELATED WORK
2.1 Work related to document-elements

The operational methodology and experimental results in a scientific paper are often
elaborated using document-elements like figures and tables. There has been some
work aimed at extracting this useful information from document-elements. Kataria
et al. [2008] use image processing and Optical Character Recognition techniques for
automatic extraction of data points and text blocks from 2-D plots. This extracted
information can then be indexed and made available through a search interface to
the end user. Liu et al. [2007] describe TableSeer, a search engine for tables in
digital documents. They propose algorithms for automatic detection of tables in
digital documents and table metadata extraction. A tailored vector-space model
based ranking algorithm, TableRank is used to rank the search results. A specialized
search engine for biology documents, BioText Search Engine, offers the capability
to search for figures and tables [Hearst et al. 2007]. Similarly, the CiteSeerX digital
library also offers a table search functionality®. However, none of these systems
can actually summarize the information contained in a document-element. Often
they do not provide enough textual information to help the end-user determine the
relevance of a particular table or figure to her information needs.

Futrelle [1999] introduces the idea of diagram summarization and explores var-
ious related issues and problems. He advocates the use of the internal structure
of the diagrams as well as the text in captions, running text and the diagrams
themselves. The relationship between the text and the graphics is analyzed and

Shttp://citeseerx.ist.psu.edu/
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the importance of captions and the reference text in diagram understanding is em-
phasized. Huang et al. [2005] utilize textual and graphical information in scientific
charts to understand the underlying semantics. They do not, however, consider the
important information present in the running text of a document. We also found
previous work that uses figure captions as a guiding tool for extracting informa-
tion about the figures. Guglielmo et al. [1996] report the use of figure captions for
image retrieval systems. Passonneau et al. [1996] proposed a system that gener-
ates summaries of work flow diagrams but their approach is very specific in nature
as it requires as input a set of flat attribute-value list representations describing
all the information about the diagrams. No efforts, however, have been made to
extract information related to document-elements from the document text. This
information can greatly increase the understanding of document-elements without
requiring the end-user to expend the time to read the entire document.

2.2 Summarization by Sentence Extraction

Automatic text summarization has been a long-standing and well-studied problem
of interest to researchers in natural language processing, artificial intelligence and
information retrieval [Mani and Maybury 1999]. Most summarization methods fall
under two categories: Query Independent Summarization (QIS) and Query Depen-
dent or Query-Biased Summarization (QBS). QIS techniques are static in nature
and focus on producing generic summaries that act as surrogates for the original
document [Luhn 1958; Kupiec et al. 1995]. QBS techniques on the other hand, are
dynamic in nature and focus on producing query-specific summaries of the docu-
ments. QBS may therefore generate different summaries for the same document in
response to different queries. This property is very useful in information retrieval
and web search, because it provides a better means of gauging the relevance of
search results [White et al. 2003]. Almost all modern web-based search engines
display short text snippets along with the search results. These snippets are usu-
ally generated using query-biased summarization techniques. Selected portions of
text are extracted based on their semantic closeness to the query. As identified by
Tombros and Sanderson [1998], query-biased snippets alleviate the need to refer
to the whole document text and help the user perform relevance judgments more
quickly and accurately.

Sentence extraction has been one of the most popular techniques for automatic
text summarization. It is useful for single and multi-document summarization as
well as for query independent and query-biased summarization [Luhn 1958; Kupiec
et al. 1995; Teufel and Moens 1997; Goldstein et al. 1999; Goldstein et al. 2000; Ko
and Seo 2008; Metzler and Kanungo 2008]. Kupiec et al. [1995], were among the
first to consider summarization as a statistical classification problem. They use a
Naive Bayes classifier for ranking sentences based on the probability of their being
a part of the summary. Teufel and Moens [1997] have replicated their method and
experimented with different datasets. Recently, Metzler and Kanungo [2008] have
evaluated different machine-learning based sentence selection techniques for query-
biased summarization. Using standard TREC test collections, they have evaluated
Ranking SVMs, Support Vector Regression (SVR) and Gradient Boosted Decision
Trees (GBDT) for the sentence-selection problem. Their results show that the
effectiveness of machine learning approaches varies across collections with different
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characteristics. All the above techniques, however, are related to either single or
multi-document summarization. They are not concerned with document-elements.

In our previous work [Bhatia et al. 2009], we have described briefly the fea-
tures that can be used for identifying sentences that summarize the content of a
document-element and some results on a small dataset. In this work, we describe
our approach in detail to enable reproduction, and provide additional experimental
evaluation.

3. IDENTIFYING DOCUMENT-ELEMENT RELATED INFORMATION

In this section, we describe strategies to automatically identify information related
to document-elements . We treat this problem as a classification task - each sen-
tence is either relevant or non-relevant for a document-element. We describe the
classification methods used and associated features used below.

3.1 Pre-processing

Text Extraction: A majority of the files in modern digital libraries are PDF files.
All the files in our dataset are also in PDF format and thus, need to be converted
to text format for further processing. We tried several tools available for PDF
to text conversion (PDFBox®, PDFTextStream?, XPDF® and TET?Y) and found
PDFTextStream to be the most suitable for our purpose. It performed best at pre-
serving the sequence of text streams in the order they appeared in the document,
especially for documents in double column format that are common in scientific lit-
erature. The text thus obtained is processed to extract document-element related
information.

Document-Element Caption Parsing: Captions contain useful information
cues that help in understanding the content of a document-element. A well-crafted
caption explains the contents of a document-element well. Corio and Lapalme have
studied a corpus of more than 400 documents and found that captions and figures
complement each other and are incapable of transmitting the intended message com-
pletely when used in isolation from each other [Corio and Lapalme 1999]. Thus,
extracting document-element captions is the first logical step in our algorithm. In
order to deal with variations in the caption format across different domains and
writing styles, we propose a grammar to distinguish and extract caption sentences
from the rest of the sentences (see Figure 3).

The CAPTION non-terminal in this grammar has 4 sub-parts. DOC_EL_TYPE
specifies the type of the document element, namely figure, table or algorithm.
FIG_.TYPE, TABLE_TYPE and ALGO_TYPE refer to the variations of the words
“Figure”, “Table” and “Algorithm” respectively, as they occur in the captions.
The DOC_EL_TYPE non-terminal is followed by an integer that represents the
document-element number. This number is used to track the corresponding ele-
ments and their reference sentences. The integer is followed by a DELIMITER that

6http://incubator.apache.org/pdfbox/
"http://snowtide.com/PDF TextStream
8http://www.foolabs.com /xpdf/about.html
9http://www.pdflib.com/products/tet/
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( CAPTION
( DOC_EL_TYPE
( FIG.TYPE

y = (DOCEL.TYPE) ( Integer) ( DELIMITER) ( TEXT)
)
)
( TABLE_TYPE)
)
)
)

{ FIG_TYPE) |( TABLE_TYPE) |( ALGO_TYPE )
FIGURE|Figure|FIG.|Fig.

TABLE|Table

Algorithm|algorithm|Algo.|algo.

n= .

= ( A String of Characters)

( ALGO_TYPE
( DELIMITER

Fig. 3. A grammar for document-element captions.
can again be either “:” or “.”. The final non-terminal TEXT gives a textual descrip-
tion of the element. Specifying a grammar enables us to follow a unified approach
for dealing with different types of document-elements. Any new document-element
can easily be handled by including rules for its DOC_EL_TYPE in the grammar.

Sentence Segmentation: After extracting the caption sentences from the docu-
ment text, we need to split the document text into its constituent sentences. Since
our goal is to identify and extract sentences that are related to document-elements,
accurate sentence segmentation is very important. However, the raw text obtained
after caption removal contains a lot of unwanted information such as document
title, authors’ names and affiliations, section headings, table data etc. They are
not related to document-elements and they might harm the sentence segmentation
process. We use the following heuristics to remove this noise and clean up the
document text:

(1) Average Line Length: The length of a line is defined as the number of words
in the line. All the lines in the document text with length smaller than 7 times
the average line length are removed from the document text. This method
helps in filtering out the section headings, titles etc., that are generally shorter
than the remaining lines [Kupiec et al. 1995]. In this paper, we chose 7 to be
equal to 0.8. We also made sure that no line at the end of a paragraph was
removed. Also note that this pre-processing is done after caption extraction so
that the caption is not discarded as noisy data.

(2) Word Density: The document text contains a lot of sparse lines corresponding
to table data, equations, authors’ names and affiliations etc. Generally, when
converting from PDF to text, formatting of table text etc. is lost and the
mathematical symbols in equations are not properly converted to text form.
Hence, these need to be removed. In order to identify these sparse lines, we use
a word density measure that is defined as follows:

L
dw =773 S
Here,
dw; is the word density of line [,
L is the length of line ! in words,
S is the number of spaces in line [.

ACM Journal Name, Vol. 2, No. 3, 09 2001.
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Note that the word density of a normal text line is greater than 0.5, because in
this case S = L —1. So we filter out only those lines from the document having
word density less than 0.5.

The cleaned up text is then fed to a sentence segmenter. It splits the document
text into its constituent sentences and yields the sentence set S.

Reference Sentence Parsing: Although captions provide some details about the
element of interest, often they do not contain enough information to allow the reader
to understand the information in the document element. Elzer et al. [2005], study
the role of figure captions in understanding figures. They conclude that though cap-
tions help in understanding a figure’s intended message, they alone are insufficient
to help a reader to fully understand and interpret a given figure. In order to get a
complete understanding of the content and context of a document element under
consideration, we have to also analyze the running text in the document [Futrelle
1999]. Assuming good writing style, we hope to find at least one explicit reference
to a particular document-element in the running text and this reference sentence
can reveal useful information about the element. To identify reference sentences,
we use a grammar similar to that used for caption parsing. However, there is a
small difference. In the reference sentence, the delimiter will not be present in most
cases and the integer will tell us to which element this sentence is referring.

In order to evaluate the performance of the above mentioned pre-processing steps,
we used a set of 17 different Computer Science papers that had 192 document-
elements and 258 associated reference sentences. The method described above for
caption extraction was able to identify 177 caption sentences out of which 173 were
correct and 4 were false positives (reference sentences identified as captions). Over-
all, the method achieved a precision of 97.74% and recall of 90.10%. The method
for extracting reference sentences achieved a recall of 86.43% with 100% precision.
However, we do note that the performance of these methods may differ depending
upon the field of study as different fields use different formatting standards and
the rules described above may need to be modified per the writing conventions of
the field under study. The main objective of this work is to study the problem of
synopsis generation and identifying captions or references given a general document
is a separate problem that is out of scope of the present work. In this paper, we
focused only on Computer Science publications and the methods described above
worked very well for these papers.

3.2 Feature Extraction

As outlined in the previous section, complete understanding of document-elements
critically depends on the content as well as the context in which they are used in
the document. Therefore, we try to extract features for each sentence that can
capture how well a sentence describes the content and the contextual information
of a document-element.

3.2.1 Content based Features

(1) Similarity with Caption (CapSYM):
This feature utilizes information cues present in the caption. It is a score

ACM Journal Name, Vol. 2, No. 3, 09 2001.
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assigned to each sentence based on its similarity with the caption. After removal
of stopwords from the caption sentence and stemming using Porter’s Algorithm
[Porter 1980], the resulting keywords form a “query” that provides cues about
the information contained in the document-element. This query is then used
to assign Similarity Scores to all sentences in the document based on their
similarity to the query. We adapt Okapi BM25 [Robertson et al. 1995; Manning
et al. 2008] as our similarity measure, since it has been proved to be very
effective in a wide variety of IR tasks. It is defined as follows:

If ¢ is the generated query then the BM25 score of sentence s in document D
is computed as:

BM25(q, S) = Z 1og E X (kl + 1)7&.]?5 y (kl: + :lt)tftq
e R R R Y R M

2)
where:
N is the total number of sentences in the document,
sf; is the sentence frequency, i.e., the number of sentences that contain the
term ¢,
tfis is the frequency of term ¢ in sentence s,
tfiq is the frequency of term ¢ in query g,
ls is the length of sentence s,
lqv 1s the average length of sentences in D,
k1, ks and b are constants which are set to 2, 2 and .75 respectively. These
values have empirically been found to perform well [Manning et al. 2008].
In the above equation, the term log sAft on the right hand side represents the
Inverse Sentence Frequency. It is analogous in function to inverse document
frequency (IDF) as used in information retrieval and deemphasizes common
terms. The second term represents the frequency of each query term t in
sentence s, normalized by sentence length and scaled by k1. A value of k1 =0
refers to using a binary model where all the terms present in a sentence are given
an equal weight. On the other hand, a large k1 corresponds to using raw term
frequency. Likewise, the third term scales the term weights by the frequency of
terms in the query. The parameter (0 < b < 1) controls the amount of sentence
length normalization, with b = 1 for full length normalization and b = 0 for no
normalization at all. After computing the scores for all the sentences, the top
20 sentences with the highest scores are selected and assigned a feature value
of 1. All other sentences are assigned a feature value of 0.

Similarity with Reference Sentence (RefSYM)

Like captions, the reference sentences also contain important cues providing
information about the document-elements. For all the reference sentences of a
document-element, we compute their similarity scores with all the other sen-
tences as described above. The top 20 highest scoring sentences are assigned a
feature value of 1 while all other sentences get a feature value 0.

Cue Words and Phrases (CP) There are certain cue words and phrases
that are used frequently by authors while describing a document-element. For

ACM Journal Name, Vol. 2, No. 3, 09 2001.
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accuraci describ illustr origin run
achiev detail improv outperform scenario
actual determin increas output schema
addition differ infer paramet scheme
aggreg discuss inform partition score
algorithm distanc input percentag slope
analysi distribut instanc perform show
approxim docum interest plot shown
assign error label point signific
averag estim larg position significantli
baselin evalu larger precision similar
case execut length predic size
collect exist level previou small
column expect line problem state
compar experiment list procedur step
comparison fact maximum process structur
comput featur mean produc system
concept figur measur rang tabl
consist final method rank techniqu
constraint focu metric rate test
content frequenc minimum row threshold
correl frequent model record time
cost good note relat total
curv graph number repres valu
data hierarchi observ requir vari
dataset high obtain result variabl
defin higher oper return x-axis
depict highlight optim rule y-axis
Table II.  Cue words used in our experiments.

example, certain verbs are used typically to describe the purpose of document-
elements (“shows”, “describes”, “illustrates” etc.). Likewise, there are many
document-element specific words that can be used to identify related sentences
( “distribution”, “points” etc. for figures; “row”, “column” for tables). A list
of 140 such words (listed in Table II, after stemming) was created by manual
inspection of 200 document-elements. These 200 document-elements were dif-
ferent from the ones we used for experiments in Section 5. A sentence in which
one or more cue words/phrases were present was assigned a feature value of 1.
All other sentences were assigned a feature value of 0.

3.2.2  Context based features. The features described above consider only the

content similarity between sentences in a document and the document-element.
They assume all sentences to be equally important. This assumption, however, is
not true as explained in Figure 4. Generally, when a document-element is referenced
in a sentence in the running text, the sentences near it also relate to the document-
element and are “contextually” more important than the other sentences. These

ACM Journal Name, Vol. 2, No. 3, 09 2001.
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“nearby” sentences provide the “context” in which a document-element is being
described or used. We use the following features to identify and capture these
contextually important sentences:

Contextually
Important Sentences

/\ /\ Sentence Stream

Reference Sentences

Fig. 4. Contextually Important Sentences. Our assumption is that sentences near the reference
sentence of a document-element are more important than the sentences farther away from the
reference sentence. Further, the importance of sentences decreases with their distance from the
reference sentence.

(1) IfReference Sentence (IfRefSent)
It is a binary feature with a value of 1 if a sentence is a reference sentence for
the document-element. Otherwise, it has value 0.

(2) Paragraph Location (IsInSamePara)
It is again a binary feature and has a value 1 if a sentence belongs to the same
paragraph as the reference sentence. Otherwise, the value is 0.

(3) Proximity This feature captures the fact that a sentence closer to the reference
sentence has a higher probability of being related to the document-element than
a sentence located far away from the reference sentence. The first ten sentences
on either side of a reference sentence are assigned a feature value of 1. All other
sentences are assigned a feature value of 0.

3.3 Classification

In this sub-section we briefly describe the classification methods used for identifying
document-element related sentences.

3.3.1 Naive-Bayes Classifier. Naive-Bayes classifiers have been previously used
successfully to extract sentences for document summarization [Kupiec et al. 1995;
Teufel and Moens 1997]. This method is simple, fast and can be easily adapted for
use in modern digital libraries having millions of documents. It is defined as follows:
Let the set of sentences that are related to the document-element d be Sy and let S
be the set of all sentences in the document D. Given the features Fi, Fs, ..., F,, for
sentence s € S, we use Bayes’ rule to compute the probability that s also belongs
to Sy, as follows:

P(F1,Fs,... . F,|s€S)P(s €S
P(SGSd | Fl,F2,.",Fn) - ( : 2P(F1 F|‘2 Fd)) ( d) (3)
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Assuming independent features, the above equation can be written as:
[T, P(E; | s € Sa)P(s € Sa)
[, P(F)

The probabilities P(F; | s € Sg) and P(F;) are not known a priori but they
can be estimated by counting occurrences in the training set. This gives a simple
Bayesian classification function that assigns a probability score to each sentence in
the document. The top-scoring sentences can be identified as related to document-
elements. The scores for all the sentences in the document are normalized in the
range [0-1]. Note that P(s € Sg) is the same for all sentences in the document and
is therefore a constant. Since we are interested in the relative values of sentence
scores and not the absolute values, this constant may be ignored.

P(SESd|F1;F27"'7Fn): (4)

3.3.2  Support Vector Machines. Support Vector Machines (SVMs) are a class of
supervised learning algorithms that have been successfully used for a wide variety
of classification problems [Bishop 2006]. In our problem, sentences in a document
that are related to a document-element constitute one class (labeled positive) and
all the other sentences constitute the other class (labeled negative).

For our problem, however, we can not directly use standard SVMs because in
general, there are very few sentences in a document that are related to a document-
element, i.e., the proportion of data points in the two classes is unbalanced. In such
problems, it has been proposed to use different penalty parameters for different
classes in the basic SVM formulation [Osuna et al. 1997]. Thus, the basic SVM
problem can now be formulated as:

1runér}é w w+C+ZhZA§Z+C, y;léz (5)
such that,
yi(w  ¢(x;) +b) > 1 -, (6)
and,
& >0,i=1,...,1 (7)

Here, z; is the feature vector of the data point under consideration and w is the
weight vector that along with b determines the separating hyperplane between the
two classes. C; and C_ are the parameters that determine the misclassification
penalty associated with positive and negative examples. As indicated above, in the
present problem, we have a lot more non-relevant sentences than relevant sentences.
This imbalance can be accounted for by choosing C and C_ so that the ratio of
C4 to C_ is greater than one.

Support Vector Machines predict the class labels of test points on the basis of
the learned model. However, in addition to the class labels, we are also interested
in knowing about the relative importance of individual sentences. Among all the
sentences that are related to a document-element, some might be more important
than others. This information is essential for producing a ranked list of relevant
sentences and for automatically generating dynamic length synopses as described
in the next section. In order to obtain probability estimates from the SVM output,
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we use the method based on pairwise coupling as described by Wu et al., [Wu et al.
2003].

We used the LIBSVM library for support vector machines in this paper [Chang
and Lin 2001]. Tt provides options to control the ratio of C and C_ as well as
implements the pairwise coupling method for computing the probability estimates.

4. SENTENCE SELECTION - DETERMINING OPTIMAL SYNOPSIS SIZE

After identifying the document-element related sentences, we need to decide how
many and which sentences to include in the synopsis that will be presented to
the user. Both of our classification methods also provide us with a score that
is a measure of relative importance of individual sentences and can be used for
selecting the most relevant sentences. Two possible approaches towards addressing
this problem are 1) always select a fixed number of sentences, or 2) use a global
score threshold for all document-elements. However, both these approaches have
their own shortcomings [Metzler and Kanungo 2008]. Always returning a fixed
number of sentences is a rigid strategy and fails to adapt to cases when there are
fewer or more relevant sentences than the fixed number chosen. Similarly, choosing
a fixed global score threshold that will work for all cases is difficult.

Carbonell et al. [1998] describe Maximum Marginal Relevance (MMR) as a crite-
rion for selecting sentences for query-biased summarization. Their approach com-
bines query-relevance and information novelty, and tries to minimize the redun-
dancy in the final set of selected sentences. For a complete document like a paper,
there are many sentences that convey the same information. For example, sen-
tences in the abstract, introduction, conclusion etc., almost always have similar
information content. However, for a document-element, we get only a small set
of sentences that are actually related to it. Therefore, it is unlikely that such a
small set of candidate sentences will introduce redundancy. However, we observed
in our preliminary experiments that presenting all such relevant sentences to the
user may have a detrimental effect on the desirability and user-friendliness of the
synopsis due to the efforts involved in reading a longer synopsis. A longer synop-
sis might be comprehensive, but it may also contain some unrelated or marginally
unrelated information. Moreover, it requires more time to read and understand
a longer synopsis, thereby defeating the whole purpose of making search results
more user-friendly. Therefore we seek to determine an optimum synopsis size that
balances the trade-off between information content and length of the synopsis.

In general, the sentence selection problem can be framed as follows: let Uy be
the Utility measure of sentence sy that tells us whether it is useful to select the
sentence or not. It is defined as:

U = g(k) = f(k) (8)

Here, g(k) is a function that favors the selection of s and f(k) is another function
opposing the selection of si. Sentences for which utility > 0 are included in the
final set. Note that when g(k) is the similarity between s and the query and f(k)
measures the redundancy of s, Uy becomes same as Maximum Marginal Relevance.
We now define the Utility measure more rigorously. Let the score of the k"
sentence be scorer and let all sentences be ranked in decreasing order of their
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scores so that ¢ < jimplies score; > score;. We define the Utility measure Uy, as:

Uy, = scorey, — (1 — expf/\(kfl)) (9)

We include a sentence in the synopsis if and only if its utility is greater than zero.
The above function is chosen so as to satisfy the following properties:

—The utility of a sentence is determined by two competing factors — (a) The rele-
vance of the sentence to the document-element that is measured by the score of
the sentence; (b) The penalty incurred by having an additional sentence sy, in the
synopsis. The Penalty Parameter \ controls the penalty for including additional
sentences and thus, determines the length of the synopses.

—f(1) = 0, this is important because no penalty should be incurred for including
the first sentence. It ensures that we will never have an empty synopsis.

—f(k) is a monotonically increasing function that assigns lower penalty to initial
sentences and gradually increases the amount of penalty as more and more sen-
tences are added to the synopses. If A = 0, no penalty is incurred while adding
a sentence and we will have the whole document as the synopsis. On the other
hand, if A is very high, we will have very short synopses.

The final set of selected sentences is arranged in the order in which they appear in
the document. Non-consecutive sentences are separated by ellipsis (...) to indicate
discontinuity and maintain readability and cohesiveness of the synopsis.

5. EXPERIMENTS AND RESULTS

In this section, we evaluate the effectiveness of the proposed methods for extracting
document-element related information. We compare the two classification meth-
ods (Naive Bayes and SVM) and study the effects of different features used. We
also evaluate the proposed method for automatic sentence selection and study how
variations in the penalty parameter A affect the generated synopses. A user study
is also performed to measure how the synopses generated by our proposed method
compare with other state-of-the-art approaches.

5.1 Data Description

For our experiments, we selected 290 different document-elements from 152 differ-
ent Computer Science publications covering varied topics such as operating systems,
data mining, information retrieval, theoretical computer science and databases. The
average length of each document is 314.66 sentences. The dataset consists of 163
figures, 78 tables and 49 algorithms. For each document-element, we asked two
judges (J1 and J2) to manually identify the relevant sentences from the associ-
ated document. Judge J1 was a first year graduate student in Computer Science
and judge J2 was a senior year undergraduate (honors) student in Computer Sci-
ence. Note that users who evaluate our system must have some expertise in the
area such that they can read and understand an academic paper clearly — a pre-
requisite for evaluating the generated synopses. Given this requirement, evaluation
of our system using a system like the Amazon Mechanical Turk or using a gen-
eral recruitment of students across the university were not feasible. Inevitably,

ACM Journal Name, Vol. 2, No. 3, 09 2001.



16 . Bhatia and Mitra

Figure Table Algorithm All

No. of document-elements 163 78 49 290
Caption length (no. of sentences) 128 £0.80 1.44 +£0.81 1.00+£ 0.00 1.28 £0.75
Average number of reference sen- 1.42 +0.89 1.69 +1.27 2.14 £ 142 1.62 £ 1.16

tences per document-element

Average number of relevant sen- 9.02 + 5.88 7.67 £4.32 8.00 + 3.05 8.49 £+ 5.13
tences (synopsis length)

Table ITI. Characteristics of our test dataset.

this limits the size of the evaluation study we can perform. Moreover, in order to
avoid biased evaluations, we selected our evaluators such that both J1 and J2 were
not associated with the project. J1 and J2 provided judgments for 140 and 150
document-elements respectively. For each document-element, they were asked to
identify a set of sentences from the associated document that could describe the
content of the document-element. We treat all such sentences identified by the
human judges as relevant to the document-element and all the remaining sentences
in the document as irrelevant to the document-element. Thus, for each document-
element the sentences identified as relevant by the human evaluator were assigned a
label 1 and all other sentences in the associated document were assigned a label -1.
Table III summarizes the characteristics of the dataset thus created. We note from
the table that the number of sentences that are relevant to a document-element is
much less than the average number of sentences in a document (314.66 sentences).

5.2 Inter-annotator Agreement

In order to study the agreement between the two judges, we randomly selected 50
document-elements from the set evaluated by each evaluator and asked the other
evaluator to provide his judgments for these document-elements. In this way, we
obtained a set of 100 document-elements for which the synopses were provided
by both J1 and J2. This set was used to study the agreement between the two
evaluators. The average length of the synopses is 8.25 sentences for J1 and 7.38
sentences for J2. We used following two metrics to study the agreement between
the two judges.

(1) Jaccard Coefficient: It is used to measure the similarity between two given
sets and is defined as the ratio of the size of the intersection and the size of the
union of the two sets. In our case, the two sets under consideration are the sets
of relevant sentences as identified by each judge and the Jaccard Coefficient is
computed as follows:

Total number of sentences considered relevant by both J1 and J2

Total number of sentences considered relevant by either of J1 or J2
The average Jaccard Coeflicient between J1 and J2 was found to be 0.6438.

(2) Kappa Coefficient (x): The Kappa Coefficient to measure the inter-annotator
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J2

Relevant  Non-Relevant

Relevant 5.67 2.58
Non-Relevant 1.71 353.26

J1

Table IV. Confusion Matrix for judgments provided by two judges J1 and J2.

agreement is defined as follows:
_ Pr(a) — Pr(e)
~ 1—Pr(e)
Here, Pr(a) is the observed agreement between the two annotators and Pr(e)

is the probability of the two annotators agreeing by chance. For our case, the
average Kappa Coefficient between the two annotators was found to be 0.7427.

(10)

For this particular task, we note that the number of sentences in a document that
are related to a document-element is much less than the number of sentences that
are not related to the document-element. As mentioned in Table III, average synop-
sis length (i.e., number of relevant sentences) is just 8.46 sentences per document-
element whereas a document contains a few hundred sentences. Hence, for a given
document-element even if the two judges pick completely different sets of sentences
to be included in the synopsis, the fraction of sentences for which their judgments
agree will still be very high due to the large number of irrelevant sentences. Hence
in order to get a better understanding of the inter-annotator agreement, we com-
pute the confusion matrix between J1 and J2 (Table IV). The confusion matrix
shown in Table IV is the average matrix for 100 document-elements used for study-
ing inter-annotator agreement. From the confusion matrix, we observe that on an
average there are 5.67 sentences per document-element that both the annotators
agree on being relevant. Furthermore, on an average, there are 2.58 sentences per
document-element that J1 considers as relevant but J2 considers as irrelevant. On
the other hand, there are 1.71 sentences that J2 considers to be relevant but J1
considers them to be irrelevant. The number of sentences that both the annotators
consider as irrelevant is very high (353.26 sentences per document-element).

5.3 Relevant Sentence Identification

The aim of this experiment is to evaluate how well the proposed methods are able
to identify the document-element related sentences. We use a Naive Bayes classifier
and an SVM for computing probability estimates . Both methods assign a score to
each sentence. The score is a measure of the sentence’s relevance to the query. If the
model learned is reasonable, then the sentences that are more relevant are assigned
a higher score. Thus, each method gives us a ranked list of relevant sentences
for each document-element. As discussed by Kanungo and Metzler [Metzler and
Kanungo 2008], an appropriate evaluation measure for the sentence selection task
is R-precision. For a given <document-element,document> pair, the R-precision is
defined as the precision at rank R, where R is the total number of relevant sentences
in the document. This measure is more appropriate than using precision at a fixed
value because for different <document-element, document> pairs, the value of R

ACM Journal Name, Vol. 2, No. 3, 09 2001.



18 . Bhatia and Mitra

Naive Bayes SVM

Figures 0.7424 0.7172
Tables 0.6867 0.6680
Algorithms 0.6190 0.6143
All 0.7110 0.6507

Table V. R-precision achieved by Naive Bayes and SVM classifiers for the sentence extraction
task. We report results for the whole dataset as well as for individual document-element types.
The differences between the two classifiers were not found to be statistically significant at the 95%
confidence interval using one-way analysis of variance (ANOVA) test. However, for each classifier,
the difference between precision values for figures and algorithms were found to be statistically
significant at 95% confidence interval using one-way ANOVA followed by a multiple comparison
test using bonferroni compensation.

is different and ideally, we want to return only these R relevant sentences.

All the features that we use are categorical in nature. Categorical features are
useful for Naive Bayes classifiers. For our SVM, we transform the categorical fea-
tures into numeric data as described in the LibSVM guide [Chang et al. 2009)].
We use 5-folds cross validation for evaluation. For each validation, both SVM and
Naiive Bayes classifiers were trained on the training set and then the performance
of the learned classifier was evaluated using the test set.

Table V reports the R-precision values achieved by the two methods averaged
over five validations. We report the results for the whole dataset as well as for each
document-element type individually. R-Precision measures how many sentences out
of the total R relevant sentences were present in the top R sentences. Note that
here R is different for different document-elements. We see that the performance
of both the methods is very similar for the sentence extraction task. We also note
that the Naive Bayes classifier outperforms the SVM classifier by small amounts,
however, the differences between the two classifiers were not found to be statistically
significant using a one-way analysis of variance (ANOVA) test at 95% confidence
interval. Analysing the results by each document-element type, we observe that
both the classifiers perform best for figures followed by tables and algorithms, in
that order. In order to assess the statistical significance of these differences, we
performed an unbalanced one-way ANOVA test followed by multiple comparison
test using Bonferroni correction. For both the methods, differences between figures
and algorithms were found to be statistically significant at the 95% confidence
interval. From Table III, we observe that all the algorithms in the dataset have a
single sentence caption. In fact, a majority of these captions were either function
names (e.g. Algorithm 3: SuffixFilter(x, y, Hmaxz, d) ) or algorithm names (e.g.
Algorithm 1 Link-Training Algorithm). On the other hand, captions for figures and
tables were comparatively longer and contained more information that could be
utilized by our algorithm.

In Figure 5, we report precision at different ranks (PQN, N = {1,2,3,4,5}) for
both the classifiers. Precision at N measures how many of the relevant sentences
were present in the top N sentences. We observe that both the methods achieved
high precision values at top 5 ranks indicating that both the methods are able to
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Fig. 5. Precision achieved by Naive Bayes and SVM classifier at different ranks.
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Fig. 6. Performance of individual features for : (a) Naive Bayes and (b) SVM.

learn reasonable models and the scores assigned on the basis of learned models are
good indicators of the relevance of sentences to document-elements.

Next, in order to understand the relative importance of the different features
we examine the performance of each individual feature for the sentence extraction
task. The results for both the Naive Bayes and SVM methods are summarized in
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Figure 6. We note that the cue-phrase feature performs the worst for our problem
even though it has been used successfully in sentence extraction for generic docu-
ment summarization [Kupiec et al. 1995; Teufel and Moens 1997]. Moreover, we
also observe that in general, the performance of the different context-based features
is better than that of the content-based features. This observation substantiates
our hypothesis that contextual information is essential for a proper understand-
ing of the document-elements. The context based features help us identify regions
in the document text that are important with respect to the document-element.
The content-based features provide additional useful information that helps us to
determine which sentences are actually related to the document-elements.

It is also interesting to note how well the human judges perform at this task
and compare the performance of our proposed automated method with the perfor-
mance of human judges. For this evaluation, we used the same set of 100 document-
elements described in subsection 5.1. First, using the sentences marked by J1 as the
“gold standard”, we compute precision of the relevance judgment provided by J2.
Then, we compute the R-precision of each synopsis as produced by the proposed
method 9. Next, we treat the sentences marked by J2 as the gold standard and
compute the precision of the relevance judgments provided by J1 and the proposed
method. Table VI summarizes the results. Using the relevant sentences provided
by J1 as a gold standard, J2 achieves a precision of 79.90% whereas the auto-
mated methods achieve an R-precision of 73.79%. The difference in performance
of the human judge and our proposed method was found to be statistically sig-
nificant using a one-way ANOVA test at 95% confidence interval. When we treat
the relevance judgment of J2 as the gold standard, the precision for J2 is 78.21%
whereas our proposed method achieves an R-precision of 74.65%. The difference,
however, was not found to be statistically significant. Note that we report the
precision for relevance judgments provided by the human judges and R-precision
for the proposed method. In our proposed framework, the number of top scoring
sentences that should be retained in the synopsis is not known in advance. Using
R-precision means that the synopsis produced by our proposed methods are of the
same length as that of the gold standard synopsis. This is a reasonable approxima-
tion as the average synopsis length for the two human evaluators is also very similar
(subsection 5.2). From Table VI we observe that the precision values achieved by
our proposed method are quite comparable with the values obtained by the human
judges, which can be considered as a reasonable upper bound for the given task.
We do however note that the levels of agreement may vary depending upon the
dataset as well as the human annotators.

5.4 Sentence Subset Selection

After identifying relevant sentences from the documents, we need to select a subset
of top-ranking sentences that should be included in the final synopsis to be presented
to the user. In this sub-section, we evaluate our proposed sentence selection strategy
for this purpose. We propose a model for sentence selection trying to strike a balance
between the information content and the conciseness of the generated synopses.

10We use the Naive Bayes classifier for this part as its performance was found to be better than
that of the SVM.
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Gold Standard J1 J2 Proposed Method
J1 - 0.7990 0.7370F
J2 0.7821 - 0.7465

Table VI. Comparing the performance of proposed method with that of human judges. T indicate
a statistically significant difference in performance as compared to the human judge using one-way
ANOVA at 95% confidence interval.

The penalty parameter A, as defined in equation 9, controls the length of generated
synopses by penalizing the inclusion of additional sentences in the synopses. In
order to study the behavior of generated synopses with varying As, we generated
synopses for different values of A\, varying from 0 to 1, with increments of 0.01. For
each value of A\, we compute the average length of synopses (in number of sentences),
precision, recall and F1 measure. The results are summarized in Figure 7. Note
that the variation of the average length of the synopses is shown on a log scale. In
all other graphs, the y-axis is plotted on a linear scale.

From the figure, we observe that the average length of synopses decreases as A is
increased. For very small values of A, almost no penalty is levied for the inclusion
of additional sentences. The model tries to maximize the information content and
as a result, we end up with pretty long synopses. As we gradually increase A, the
amount of penalty also increases and the less relevant sentences are filtered out. For
very high values of A\, the model favors highly concise synopses and includes only
the top few relevant sentences. The figure also shows the variations in precision,
recall and the F1 score with different values for A. Initially, with low values of A, a
majority of the sentences are selected which results in high recall and low precision
values. Increasing A results in the selection of fewer but highly relevant sentences.
Thus, we observe an increase in precision and decrease in recall values. The F1
score, which is the harmonic mean of precision and recall, follows an interesting
trend. It first increases rapidly with increasing A, achieves a maximum at A = 0.07
and then gradually falls. The F1 values remain stable in the range 0.40 — 0.48 for A
= 0.05 — .30. The average synopses length in the same range lies in between 4.28 to
9.72 sentences. Here, the use of the penalty parameter A provides us with a simple
but powerful means of generating variable length synopses according to the needs of
the users. Initially, using a moderate value of A (say 0.3), we can provide a concise
and highly informative synopsis. Then, if the user wishes to know more about the
document-element, synopses generated with lower values of A can be presented and
the X\ value dynamically adapted.

5.5 Quality Experiment

The aim of this experiment was to compare the synopses generated by our proposed
approach with that generated by the current state-of-the-art methods and investi-
gate and demonstrate the utility of synopses for document-element search engines.
For this experiment, we used three different methods as described below.

(1) Reference Sentence: For this method, the synopses were generated for all
the test cases by extracting all the corresponding reference sentences from the
document text.

ACM Journal Name, Vol. 2, No. 3, 09 2001.



22

Bhatia and Mitra

No. of Sentences

-

R-Precision
° ° o
N E ©

)
N

0.2 0.4 0.6 0.8
A

(a) No. of Sentences with A

0.2 0.4 0.6 0.8 1
A

(b) Precision with A

~0.7
o

So.¢
& 0.5

0.4

F-1 Measure
o o o o o o
BN woa o o

0.3

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1
r /s

(c) Recall with A (d) F1 with A

Fig. 7. Effect of penalty parameter A on (a) Average No. of Sentences Selected,
(b) Precision, (¢) Recall and (d) F1 Measure.

(2) Indri: We used the Indri ! search engine toolkit to generate query-biased
summaries for document-elements. We indexed all the test documents using
Indri and for each document-element, we queried the index using the same query
formulated by extracting keywords from the caption and reference sentence as
described in section 3. The synopses in this case are the query-biased snippets
accompanying the corresponding documents returned as search results. One
motivation 2 for using Indri was that it also supports long queries as is the
case here.

(3) Proposed Method: We used the Naive Bayes classifier for identifying rele-
vant sentences because of its better performance than the SVM. For sentence
selection, we used A = 0.3. We chose this value of A because at this value,
the average synopses length is same as that of summaries produced by Indri
(around 4 lines).

For this experiment, we chose a subset of 30 document-elements (10 each of fig-
ures, tables and algorithms) from our dataset. We generated synopses for each
of these by the three methods described above which resulted in a total of 90
<document-element, synopsis> pairs. The two human evaluators (J3 and J4) eval-
uated the synopses generated by different methods. J3 and J4 were both graduate
students in Computer Science and were different from the judges who prepared the
synopsis gold set. For each document-element, the generated synopses were shown
to the evaluators side by side and they were not told which synopsis was generated
by which method. Further, the order in which the synopsis generated by differ-

http://wuw.lemurproject.org/indri
12We would like to thank Susan Dumais for suggesting the use of Indri for this experiment.
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No. of ti lected
Method Document-Element Type - Of times selected as
First Second Third

Figure 1 5 4
Reference Sentence Table 2 4 4
Algorithms 1 5 4
All 4 14 12
Figure 0 4 6
Indri Table 0

Algorithms 0 5
All 0 13 17
Figure 9 1 0
Tabl 8 2 0

Proposed Method anie

Algorithms 9 0 1
All 26 3 1

Table VII. Summary of rank orderings provided by the two evaluators for the three methods.

ent methods for a given document-element were shown to them was randomized.
The evaluators were asked to rank the synopsis generated by three methods from
most preferred to least preferred. Both J3 and J4 provided rank orderings for 15
document-elements (5 of each type).

The results are summarized in Table VII. Our proposed method emerges as a
clear winner when compared to the other two methods. Our proposed method was
the most preferred method for 26 out of 30 times, thrice it was the second most
preferred method and only once was the least preferred method. The four times
when the synopses generated by the proposed method were not the first choice of
the evaluators, they chose the synopses generated by extracting all the reference
sentences as the most preferred description of the given document-element. In all
such cases, the document-element was referred to many times in the document text
resulting in a comparatively large number of reference sentences (4 to 6). All these
reference sentences indeed provide a good description of the document-element.
Further, for many document-elements that had multiple reference sentences, syn-
opses generated by the reference sentence method were chosen as the second most
preferred method. Tables VIII and IX provide some examples of synopses gener-
ated by the three methods and the respective rankings assigned by the evaluators
to these synopses.

Admittedly, the comparison of our proposed method with the two baselines
described above may not be considered completely fair as the baseline methods
do not utilize various content and context based information like the proposed
method. However, these techniques have been employed by current state-of-the-art
systems [Hearst et al. 2007; Liu et al. 2007] and our results highlight the inadequacy
of these techniques in providing sufficient information for understanding document-
elements and corroborate the need for synopsis generation for document-elements.
The superiority of the proposed method, as evident from the results, shows that

ACM Journal Name, Vol. 2, No. 3, 09 2001.



24 . Bhatia and Mitra

Axis Conditions
descendant Ln(result)>Ln(n), Rn(result)>Rn(n)
ancestor Ln(result)<Ln(n), Rn(result)<Rn(n)
parent Ln(result)<Ln(n), Rn(result)<Rn(n),
Ln(result) PLn(n)
child Ln(result)>>Ln(n), Rn(result)>Rn(n),
PLn(result) Ln(n)
preceding Ln(result)<Ln(n), Rn(result)>Rn(n)
following Ln(result)>Ln(n), Rn(result)<Rn(n)
preceding-sibling | Ln(result)<Ln(n), Rn(result)>Rn(n),
PLn(result) PLn(n)
following-sibling | Ln(result)>Ln(n), Rn(result)<Rn(n),
PLn(result) PLn(n)

Table 1: Checking XPath Location Steps

Reference Sentence (1): Given an element n, constraints determined by Ln, Rn, and PLn
to locate result elements along eight XPath axes (i.e., child, parent, descendant, ancestor,
following, preceding, following-sibling, preceding-sibling) are presented in Table 1. Thus,
by examining the constraints in Table 1, it is not difficult to verify that the book node is
a descendant of the all-items node, and the book node precedes the account node. The
conditions for matching XPath location steps along the major XPath axes, relying only on
Ln, Rn, and PLn, in the absence of any metadata level information, has been reviewed in
Section 3.2 and Table 1.

Indri (3): ...a full meta-data index (FMI), obtained by enhancing the R-tree index proposed
for XPATH LOCATION steps [13] with a new attribute for each XML element, which con-
tains the element’s (explicitly...ancestor, descendant, following, and preceding. Associating
an additional number with each node, e.g., the PARENT NODE’S LN, written as PLN, per-
mits LEVEL sensitive MATCHING as well. Given an ELEMENT n, CONSTRAINTS DE-
TERMINED by LN, RN, and PLN to LOCATE RESULT ELEMENTS along eight XPATH
AXES (i.e., CHILD, PARENT, DESCENDANT, ANCESTOR, following, PRECEDING,
FOLLOWING-SIBLING, PRECEDING-SIBLING) are PRESENTED in Table 1. A multi-
dimensional index structure, such as an R-tree, on the Ln/Rn/PLn...

Proposed Method (2): Ln and Rn suffice for matching along ordered and structural
axes, such as ancestor, descendant, following, and preceding. Associating an additional
number with each node, e.g., the parent node’s Ln, written as PLn, permits level sensitive
matching as well. Given an element n, constraints determined by Ln, Rn, and PLn to locate
result elements along eight XPath axes (i.e., child, parent, descendant, ancestor, following,
preceding, following-sibling, preceding-sibling) are presented in Table 1....Each element node
is labeled with three numbers: Ln, Rn and PLn. Thus, by examining the constraints in
Table 1, it is not difficult to verify that the book node is a descendant of the all-items node,
and the book node precedes the account node....The conditions for matching XPath location
steps along the major XPath axes, relying only on Ln, Rn, and PLn, in the absence of any
metadata level information, has been reviewed in Section 3.2 and Table 1.

Table VIII. Rank orderings provided by the two evaluators for the three methods. Numbers in
brackets indicate the rank order, 1 being the most preferred and 3 being the least preferred. Table
courtesy|[Cho et al. 2006]
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Algorithm 2 Concurrent Best First Search
Input: k,Q,PQ,,U,S,D
1: fori=1ton do

2 while PQ; not empty do

q15---1¢n

3: Entry N = PQ,.top

A: if IV is a node then

5: for j such that P@);.contains(/N) do

6: PQ;.remove(N)

T for " in N do

8: if ¢’ not in U and C covers g; then
9: PQj.enqueue(C, D(Q,C))
10: else if N is a data entry then

14 S.insert(N)

12: Update Dy,

13: if k-NN is discovered, continue from 1
14: end for

Reference Sentence (3): The function ConcurrentBestFirstSearch (Algorithm 2) utilizes
the best first search nearest neighbor algorithm to find the k-NN of every query point.

Indri (2): ...query is a binary AND operation on the bit vector. For trajectories that
cover the QUERY, the actual distance D(Q, P) is computed and stored as the lower-bound.
For other trajectories, the appropriate D(qi, P) values are used. The FUNCTION CON-
CURRENTBESTFIRSTSEARCH (ALGORITHM 2) UTILIZES the best first SEARCH
NEAREST NEIGHBOR ALGORITHM to FIND the K-NN of every QUERY POINT. The
SEARCH is incremental so that the priority queues can be preserved and reused between
subsequent executions...

Proposed Method (1): The function ConcurrentBestFirstSearch (Algorithm 2) utilizes
the best first search nearest neighbor algorithm to find the k-NN of every query point....Array
D(qi) is maintained by storing for each query point the distance from the last entry removed
from the top of the corresponding priority queue. Both functions can be straightforwardly

modified to support time-interval predicates as well as top-k searches, where more than
one trajectories are retrieved. For completeness, we use the extended algorithm for our
experimental evaluation, but present the simpler versions here for ease of exposition.

Table IX. Rank orderings provided by the two evaluators for the three methods. Numbers in
brackets indicate the rank order, 1 being the most preferred and 3 being the least preferred.
Algorithm courtesy[Hadjieleftheriou et al. 2005].

the proposed method can be successfully used to overcome the shortcomings of the
state-of-the-art techniques.

6. CONCLUSIONS AND FUTURE WORK

We identified the problem of generating synopses for document-elements like tables,
figures, and algorithms in digital documents to assist quick understanding by users
who are searching for these document-elements. Machine-learning techniques are
used to identify relevant sentences from the document text using a novel set of
features that utilizes content and context information related to document-elements.
We proposed a simple model to determine which sentences to include in the synopses
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based on their similarity with the caption and the reference sentences corresponding
to a document element and the proximity of the sentence to the reference sentences.
The model tries to balance the information content and the length of the synopsis
so that the generated descriptions are both useful and succinct. The usefulness of
our proposed approach is confirmed by empirical evaluation. In the future, we will
identify more features to improve the quality of generated synopses and investigate
the use of synopses for improved document search and document summarization.
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