
An Algorithm Search Engine for Software Developers

Sumit Bhatia∗, Suppawong Tuarob∗, Prasenjit Mitra∗† and C. Lee Giles∗†

∗Computer Science and Engineering
†Information Sciences and Technology

The Pennsylvania State University
University Park, PA-16802, USA

{sumit,szt5115}@cse.psu.edu, {pmitra,giles}@ist.psu.edu

ABSTRACT

Efficient algorithms are extremely important and can be cru-
cial for certain software projects. Even though many source
code search engines have been proposed in the literature to
help software developers find source code related to their
needs, to our knowledge there has been no effort to develop
systems that keep abreast of the latest algorithmic develop-
ments. In this paper, we describe our initial effort towards
developing such an algorithm search engine. The proposed
system extracts and indexes algorithms discussed in aca-
demic literature and their associated metadata. Users can
search the index through a free text query interface. The
source code of proposed system, being developed as a part
of a larger open source toolkit, SeerSuite, will be released in
due course. We also provide directions for further research
and improvements of the current system.

Categories and Subject Descriptors

H3.3 [Information Search and Retrieval]: Search Pro-
cess; H4.0 [Information Systems Applications]: General

General Terms

Algorithms, Design.

Keywords

Algorithm search, pseudo-code search.

1. INTRODUCTION
Algorithms are ubiquitous in Computer Science. Efficient

algorithms play an important role in many software projects.
For example, an improved and efficient ranking algorithm
can help improve the performance of software used for in-
dexing and searching billions of documents. Hence, it is
essential for software developers to keep abreast of latest al-
gorithmic developments related to their projects. There has
been much work in past to help software developers search

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SUITE ’11, May 28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0597-6/11/05 ...$10.00.

Conference No. of Algorithms

SIGIR 75
SIGMOD 301
STOC 74
VLDB 287
WWW 142

Table 1: Number of Algorithms published in differ-
ent Computer Science conferences in the last five
years (2005–2009).

for existing source code [2, 3, 9, 5], however to the best of
our knowledge, no effort has been made to develop tools
and techniques that can help software developers search for
literature about the algorithms used in source code or in
documents that describe new algorithmic developments.

Here, we describe our effort in building an algorithm search
engine using scientific publications as a document collection.
Academic documents have been used previously as a doc-
ument source for various tasks [6, 7] as they offer several
advantages –(i) academic documents, in general, follow a
structure that is easier for a machine to parse and analyze,
(ii) they are generally peer reviewed ensuring high quality
and (iii) they are often the best resource for knowing about
the latest developments in a field. As an example, Table 1
lists the number1 of algorithms described in some of the top
Computer Science conferences in last five years. Clearly, re-
searchers are busy developing algorithms for new problems
as well as continuously improving current state-of-the-art al-
gorithms. As such it behoves one to be able to search the
academic literature to be aware of these developments.

Even though popular academic literature search engines,
such as Google Scholar2 and CiteSeerX3, offer the capability
to search academic documents, these systems are not geared
towards algorithm search. These systems can not discrim-
inate between a document that contains an algorithm and
a document that does not. As a result a user searching for
query shortest path will be offered many documents that
contain the words shortest and path but do not discuss
algorithmic aspects of the shortest path problem.

Our proposed system analyzes a document to identify any
algorithms that may be present in the document. If an al-

1These numbers were obtained by our parsing methods as
discussed in Section 2.
2http://scholar.google.com/
3http://citeseerx.ist.psu.edu

Text Extraction

Synopses

Generation

Algorithm

Identification

Metadata

Extraction Index

Query Processing

And

Results Ranking

Query

Results

Document

Collection

Figure 1: Architecture of the proposed system.

gorithm is found in a document, the document text is fur-
ther analyzed to extract additional information about the
algorithm. All the algorithms thus found and their associ-
ated metadata are indexed and made available for searching
through a text query interface. For a given user query, the
system utilizes evidence from multiple sources to assign rel-
evance scores to algorithms and results are presented to the
user in decreasing order of relevance.

2. PROPOSEDALGORITHMSEARCHEN-

GINE
Figure 1 illustrates the main components of the proposed

system. All the documents in the repository are first con-
verted into text using an pdf to text converter. The ex-
tracted text is then analyzed to find algorithms which are
then indexed along with their associated meta-data. The
query processing engine accepts the query from the user
through the query interface, searches the index for relevant
algorithms, and presents a ranked list of algorithms to the
user. We now describe the various components of the pro-
posed system in more detail.

2.1 Text Extraction
The source documents for the proposed system come from

CiteSeerX, a scientific literature digital library and search
engine that contains roughly 1.4 million documents from
Computer Science and related fields. Since all the docu-
ments in the collection are in the PDF or PostScript format,
they need to be converted to text for any further analy-
sis. We experimented with a variety of text extraction tools
available (PDFBox4, PDFTextStream5, XPDF6 and TET7).
We found the performance of PDFTextStream to be suitable
for our needs. It performed best at preserving the sequence
of text streams in the order they appeared in the document,
especially for documents in the double column format that
is common in the computer science literature.

2.2 Algorithm Identification
After document text has been successfully extracted, it

needs to be analyzed to check if the document contains an al-
gorithm. Scientific documents in general have a well-defined
structure. Often algorithms/pseudocodes are described in

4http://incubator.apache.org/pdfbox/
5http://snowtide.com/PDFTextStream
6http://www.foolabs.com/xpdf/about.html
7http://www.pdflib.com/products/tet/

the form of a stand alone Text-Box, Figure or Table, along
with an associated caption and algorithm number. This al-
gorithm number is then used to refer to the algorithm in the
running text of the document. We define the sentences re-
ferring to the algorithm as reference sentences. We utilize
these structural properties of scientific documents to iden-
tify the algorithms present in a document. The captions
and reference sentences are used to check for the presence of
algorithms by using a grammar for algorithm captions [4].
We also note our text extractor was unable to extract text
from some PDF files. Improperly created PDFs and PDFs
containing scanned images of document text were the major
reasons for extractor’s failure. In order to test the perfor-
mance of our algorithm extraction method, we selected 500
PDF files at random from the repository and manually iden-
tified algorithms present in these files. Neglecting files for
which the text extractor failed, we found 46 algorithms in
these 500 files. Our algorithm extraction method was able
to identify algorithms with a precision of 79.41% and a recall
of 58.70%. In total, we found 270367 algorithms in 112836
documents in the repository.

2.3 Metadata Extraction
If an algorithm is present in a document, the document

text is then further processed to extract the algorithm’s syn-
opsis – the set of sentences from the document that are re-
lated to the algorithm. We use a Naive Bayes classifier to
identify sentences to be included in the synopsis by using a
variety of content and context based features [4]. For the
documents containing an algorithm, we also extract addi-
tional metadata including the document title, author names,
publication year and page on which the algorithm is present.
For this, we adopt the tools available from the SeerSuite
toolkit8. All the extracted algorithms from a document and
their associated metadata are then indexed using a SOLR 9

based indexer.

2.4 Query Interface and Results Ranking
The proposed system provides a free text based query in-

terface to the user. The user interface is implemented using
SeerSuite and extends CiteSeerX’s query interface. The re-
sults for a given query are presented to the user as a ranked
list of algorithms along with the associated metadata. For
algorithm ranking, we use a TF-IDF based cosine similarity
ranking function [8, Ch. 6] found in SOLR. The total sim-
ilarity score for an algorithm is a linear combination of the
following three similarity scores, with an equal weight given
to each component.

1. Similarity between user query and algorithm caption

2. Similarity between user query and algorithm’s refer-
ence sentences

3. Similarity between user query and algorithm’s synopsis

The algorithms are presented to the user in decreasing
order of their scores. Experiments comparing the perfor-
mance of our proposed system with other state-of-the-art
search engine systems have shown superiority of our ap-
proach in terms of precision and ranking performance. We
selected a set of 20 popular algorithms as test queries (e.g.

8http://citeseerx.sourceforge.net/
9http://lucene.apache.org/solr/

Figure 2: Screenshot showing results for the query “shortest path”. Along with search results, associated
metadata is also shown to the user.

topological sort, breadth first search etc.) and tested them
with our proposed system, Google Scholar and Google Web
Search. A returned result page was considered as relevant if
it contained a valid algorithm/pseudo-code. The relevance
judgments were provided by two human evaluators not as-
sociated with the project. Our proposed system achieves a
precision of 81% at top 10 ranks as compared to 41% and
44% achieved by Google Web Search and Google Scholar,
respectively.

2.5 An Example Search Session
Figure 2 shows the screenshot of the result page for the

query shortest path. The top 10 algorithms for the query,
along with their associated metadata are presented to the
user. Note that the results returned to the user provide a
good coverage of a variety of shortest path algorithms such
as the heuristic algorithm for shortest path, the Berge short-
est path algorithm, in addition to the standard shortest path
algorithm. The algorithm caption is presented in bold and
clicking on it directly takes the user to the PDF page of the
related document in which the algorithm is present. This is
illustrated in Figure 3.

3. DIRECTIONS FOR FUTUREWORK
Despite encouraging initial results, there are several as-

pects that need further improvements and are the focus of
our future research. These are discussed below.

1. Algorithm Extraction: Currently, algorithm extrac-
tion in the proposed system relies on the presence
of captions and reference sentences in document text.

This approach, being simple, scales well to large docu-
ment collections and works well in practice, especially
for well structured academic documents. However, the
approach fails to identify algorithms which have no
associated captions or captions which do not contain
the keywords “algorithm” or “pseudo-code”. We found
many such documents. For such cases, instead of a
pure text based approach, it might be useful to adopt
techniques such as page box cutting [7] that utilize dif-
ferences in visual appearances of different portions of
a document.

2. Ranking: For ranking of algorithms, the proposed
system utilizes evidence of relevance only from text
based sources (i.e., caption, reference sentences and
synopsis). However, the importance of various non-
textual relevance indicators needs to be explored. For
example, one measure of popularity of an algorithm
is the number of citations an algorithm receives. Of-
ten, when researchers propose a new algorithm, they
also discuss various shortcomings and advantages of
the proposed algorithm. Furthermore, issues related
to space and time efficiency of algorithms are also dis-
cussed. Having such information could enable us to as-
sign a higher score to more efficient algorithms. How-
ever, how we automatically infer such information from
document text is a challenging and unsolved problem.

3. Algorithm Classification: Often, algorithms for one
problem are used (adopted) to solve problems in other
domains. For example, algorithms to find shortest
path in a graph, a problem with origins in graph the-

Figure 3: Screenshots showing algorithm page displayed on clicking the first result.

ory, are used extensively in computer networks and
operations research. How can we automatically cat-
egorize algorithms based on their applications is thus
an interesting research problem since it will enable us
to answer user queries such as shortest path algo-

rithms for routing, SVM for text classification

etc. Having such information will also enable us to di-
versify search results based on applications. As an ex-
ample, for the query shortest path, the result list can
be constructed so as to cover shortest path algorithms
as used in various domains. Such diversified result lists
help in improving average user satisfaction [1].

4. CONCLUSIONS
We have described our initial efforts towards developing a

search engine for algorithms. The proposed system extracts
algorithms and associated metadata from academic docu-
ments, offers free text based query interface and presents a
ranked list of results to the user by utilizing multiple sources
of evidence. The source code for the proposed system will
also be released as a part of SeerSuite toolkit.

5. ACKNOWLEDGMENTS
This work was partially supported by the National Science

Foundation under Grants 0535656 and 0845487. We grate-
fully acknowledge help from Juan Pablo Fernández Ramı́rez
and Pradeep B. Teregowda.

6. REFERENCES
[1] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong.

Diversifying search results. In WSDM ’09: Proceedings of the

Second ACM International Conference on Web Search and
Data Mining, pages 5–14, New York, NY, USA, 2009. ACM.

[2] S. Bajracharya, J. Ossher, and C. Lopes. Sourcerer: An
internet-scale software repository. Search-Driven
Development-Users, Infrastructure, Tools and Evaluation,
ICSE Workshop on, 0:1–4, 2009.

[3] S. Bajracharya, J. Ossher, and C. Lopes. Searching api usage
examples in code repositories with sourcerer api search. In
Proceedings of 2010 ICSE Workshop on Search-driven
Development: Users, Infrastructure, Tools and Evaluation,
SUITE ’10, pages 5–8, New York, NY, USA, 2010. ACM.

[4] S. Bhatia, S. Lahiri, and P. Mitra. Generating synopses for
document-element search. In Proceeding of the 18th ACM
conference on Information and knowledge management,
CIKM ’09, pages 2003–2006, New York, NY, USA, 2009.
ACM.

[5] C. Ghezzi and A. Mocci. Behavior model based component
search: an initial assessment. In Proceedings of 2010 ICSE
Workshop on Search-driven Development: Users,
Infrastructure, Tools and Evaluation, SUITE ’10, pages
9–12, New York, NY, USA, 2010. ACM.

[6] S. Kataria, W. Browuer, P. Mitra, and C. L. Giles.
Automatic extraction of data points and text blocks from
2-dimensional plots in digital documents. In Proceedings of
the 23rd national conference on Artificial intelligence -
Volume 2, pages 1169–1174. AAAI Press, 2008.

[7] Y. Liu, K. Bai, P. Mitra, and C. L. Giles. Tableseer:
automatic table metadata extraction and searching in digital
libraries. In Proceedings of the 7th ACM/IEEE-CS joint
conference on Digital libraries, JCDL ’07, pages 91–100,
New York, NY, USA, 2007. ACM.

[8] C. D. Manning, P. Raghavan, and H. Schütze. Introduction
to Information Retrieval. Cambridge University Press, 2008.

[9] R. E. G. Valencia and S. E. Sim. Internet-scale code search.
In Search-Driven Development-Users, Infrastructure, Tools
and Evaluation, 2009. SUITE ’09. ICSE Workshop on,
pages 49–52, 2009.

