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ABSTRACT

After an end-user has partially input a query, intelligent search en-
gines can suggest possible completions of the partial query to help
end-users quickly express their information needs. All major web-
search engines and most proposed methods that suggest queries
rely on search engine query logs to determine possible query sug-
gestions. However, for customized search systems in the enterprise
domain, intranet search, or personalized search such as email or
desktop search or for infrequent queries, query logs are either not
available or the user base and the number of past user queries is
too small to learn appropriate models. We propose a probabilis-
tic mechanism for generating query suggestions from the corpus
without using query logs. We utilize the document corpus to ex-
tract a set of candidate phrases. As soon as a user starts typing a
query, phrases that are highly correlated with the partial user query
are selected as completions of the partial query and are offered as
query suggestions. Our proposed approach is tested on a variety
of datasets and is compared with state-of-the-art approaches. The
experimental results clearly demonstrate the effectiveness of our
approach in suggesting queries with higher quality.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – Query formulation

General Terms

Algorithms, experimentation

Keywords

Query suggestion, query formulation, query completion, query log
analysis, enterprise search.

1. INTRODUCTION
As users start typing a query in search engines’ query boxes,

most search engines assist users by providing a list of queries that
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have been proven to be effective in the past [26]. The user can
quickly choose one of the suggested completions (in some cases,
alternatives) and thus, does not have to type the whole query her-
self. Feuer et al. [15] analyzed more than 1.5 million queries from
search logs of a commercial search engine and found that query
suggestions accounted for roughly 30% of all the queries indicating
the important role played by query suggestions in modern informa-
tion retrieval systems. Furthermore, Kelly et al. [20] observed that
the use of offered query suggestions is more for difficult topics, i.e.,
topics about which users have little knowledge to formulate good
queries.

Most existing works on query suggestion utilize query logs to
suggest queries [2, 4, 9, 10, 13, 18, 24, 25, 27]. Such query log
based techniques are suitable for systems with a large user base.
For example, web search engines have millions of users and if a
user has some information need, almost always it turns out that
some other users have searched for the same information before.
The search engine can then utilize these large amounts of past usage
data to offer possible query suggestions.

The scenario, however, is quite different for information retrieval
systems that are not on the web or have a smaller user base, and
thus, lack large amounts of query log data. For example, search
engines built for customized applications in the enterprise domain
are used by only a few hundreds or thousands of users. An effec-
tive query suggestion mechanism is required because the difference
between users not finding some critical information and the users
finding the information with ease may have a very significant busi-
ness impact for the organization. The query logs of such systems
are relatively much smaller, especially when a system is newly de-
ployed for a small number of users, and even later on, the log sel-
dom becomes as exhaustive as that of a web search engine. Even
if a system can accumulate a relatively large query log over time,
it would take a lot of time to be mature enough and most often that
time is not affordable due to business needs. Furthermore, the data
residing in these systems are also so customized that using a query
log from another system is not a valid approach. However, the ef-
fectiveness of such enterprise search systems has significant busi-
ness implications and even a small improvement can have a positive
impact on the organization’s business. Similarly, for personal data
search systems, such as desktop search or personal email search,
often there is only a single user resulting in very small query logs.
Besides, query logs may not always be accessible in some appli-
cations due to privacy and legal constraints. Furthermore, even in
the case of general-purpose web search engines, end-users some-
times pose queries that are not there in query logs or are not very
frequent. How to offer meaningful query suggestions to users in

such scenarios is thus, an interesting research problem, which we
explore in this paper.



Effective query suggestion requires inferring a user’s query in-
tent and information needs and then suggesting queries that may
help retrieve documents containing relevant information. Formu-
lating such queries that can help information retrieval systems dis-
criminate between relevant and irrelevant documents requires pre-
dicting and using words, phrases or their combinations that are
present in relevant documents and absent in irrelevant documents,
which is an extremely difficult task for an average end-user [8].
Cui et al. [14] have shown that in the term vector-space, a large gap
exists between the terms used by users to formulate queries and
terms that are present in relevant documents. The aim of a query
suggestion mechanism then is to iteratively use the partial informa-
tion about the user’s need in the form of incomplete queries and to
suggest to the end user queries that match the end-user’s informa-
tion needs and those for which the search engine knows good re-
sults. Inspired by this, we propose a document-centric probabilistic
mechanism to generate query suggestions that does not depend on
query logs and utilizes only the co-occurrence of terms in the cor-
pus. The central idea of our approach is simple and intuitive. As
soon as a user starts typing a query, phrases from the corpus that are
highly related to the partial user-entered-query are selected as pos-
sible completions of the partial query and thus completed queries
are offered as query suggestions.

We evaluated our proposed approach with a variety of datasets
and compared the performance of our approach with that of the
state-of-the-art approach [6] and that of one available in a widely
used open-source enterprise search system [1]. The experimental
results demonstrate the superiority of our method in its ability to
(i) offer suggestions for a wide variety of queries, (ii) offer more
contextually meaningful suggestions, and (iii) generate suggested
queries with higher retrieval effectiveness when compared to the
baselines.

As we discuss in Section 2, though there have been some works
in the past that can be adopted for query suggestion without us-
ing query logs, but strictly speaking, to the best of our knowledge,
this paper is the first to study the problem of query suggestions in
the absence of query logs. Our approach is simple yet effective
and powerful, and as discussed later in Section 6, it also opens up
several aspects of improvements and future work aligned with the
concept of facilitating user’s search without the aid of query logs.

The rest of the paper is organized as follows. Section 2 provides
a review of the previous work on query suggestion – both with and
without query logs. In Section 3, we define the problem formally
and describe the proposed probabilistic approach in detail. Exper-
iments and results are described in Sections 4 and 5. Section 6
concludes the paper and offers directions for future work.

2. RELATED WORK

2.1 Relation With Interactive Query Expan-
sion

Query suggestion differs from interactive query expansion (IQE)
[16] in a fundamental way. In IQE, the user is offered a list of
suggested terms from which she can select a few to augment the

original query. However, users tend to prefer complete query sug-
gestions to individual term suggestions because of the additional
context provided by the complete query suggestion as opposed to
an isolated term suggestion [20]. The Real Time Query Expansion
(RTQE) technique as proposed by White and Marchionini [28] can
also be seen as a means for providing real-time query expansions
where a list of expansion terms is offered in real time that the user
can select and expand the query. However, in addition to offering
only single terms as suggestions, this method is limited by the fact

that it requires the user to type complete query terms and can not
offer suggestions for incomplete query terms as the goal here is to
refine the original query so as to improve the retrieval performance.
On the other hand, query suggestion mechanisms try to suggest var-
ious possible completions of the (incomplete) query the user is still
typing so as to save time and cover various possible interpretations
of the user’s information needs.

2.2 Query Suggestion using Query Logs
Large scale web search engine logs contain real, user issued

queries. Initial works on query suggestion focus on identifying past
queries similar to the current user query. Baeza-Yates et al. [2] clus-
ter queries present in search logs and given an initial query, simi-
lar queries from its cluster are identified based on vector similarity
metrics and are then suggested to the user. Barouni-Ebrahimi and
Ghorbani utilize phrases frequently occurring in queries submitted
by past users as suggestions [4]. Gao et al. describe a query sug-
gestion mechanism for cross lingual information retrieval where for
queries issued in one language, queries in other languages can also
be suggested [17].

In addition to user queries, query logs also contain valuable click-
through data and session information. Many of the previous works
on query suggestion, especially in the web domain, exploit this ad-
ditional information. By utilizing clickthrough data and session in-
formation, Cao et al. propose a context aware query suggestion ap-
proach [10]. In order to deal with the data sparseness problem, they
use concept based query suggestions where a concept is defined
as a set of similar queries mined from the query-URL bi-partite
graph. The user’s context is defined as the sequence of concepts
about which the user has issued queries before submitting the cur-
rent query. Given this context information, queries that are asked
frequently in a given context are mined from search logs and are
suggested to the user. For a given user query, Ma et al. [24] uti-
lize clickthrough data to identify semantically related queries from
query logs. Song and He [27] combine information from clicked
URLs as well as skipped URLs to identify suggestions for rare
queries.

In a single search session, a user often modifies her initial query
a few times in order to obtain the relevant information. Jones et
al. [18] utilize such modifications made by previous users for sug-
gesting queries to other users. Li et al. [22] describe a method
to compute pairwise similarity scores between queries based on the
hypothesis that queries that co-occur in a search session are related.
Given a user query, most similar queries thus identified are used as
suggestions. Cucerzan and White [13] utilize user landing pages

(pages where users finally end up after post-query navigation) to
generate query suggestions. For each landing page of a user sub-
mitted query, they identify queries from query logs that have these
landing pages as one of their top ten results. These queries are then
used as suggestions.

Boldi et al. [9] utilize query flow graphs for query suggestions.
Nodes in a query flow graph are past user queries and an edge from
qi to qj indicates that both queries are related to a similar infor-
mation need. Short random walks on a query flow graph are then
conducted to generate query suggestions. Baraglia et al. [3] how-
ever, note that the models based on query flow graphs suffer from
an ageing effect and suggesting queries using the information ex-
tracted from them may not be possible over time.

Mei et al. [25] propose an algorithm based on hitting time on
the Query-URL bipartite graph derived from search logs. Starting
from a given initial query, a subgraph is extracted from the Query-
URL bipartite using depth first search. A random walk is then con-
ducted on this subgraph and hitting time is computed for all the



query nodes. Queries with the smallest hitting time are then used
as suggestions. Ma et al. [23] show how the hitting time analysis on
Query-URL bipartite graph can be utilized to diversify suggestions.

2.3 Query Suggestion without Query Logs
Among the works where query logs are not used as the primary

resource, Feuer et al. [15] describe a proximity search based sys-
tem that suggests alternate queries if the initial query is highly spe-
cific (results in very few documents) or too broad (large number
of search results). In case of underspecified queries, most frequent
terms appearing in close proximity of the query terms in the corpus
are added to the query to narrow down the search results. For spe-
cific queries, most frequent subphrases of the query are presented
as possible modifications. Their work however is similar in prin-
ciple to query refinement and is quite different from query sugges-
tion where the objective is to present different possible queries to
the user as soon as she starts typing in the query box. Furthermore,
their approach is not real time and requires the user to type a com-
plete query first.

Bast and Weber developed the CompleteSearch engine [6, 5],
which is an efficient instant search system that computes and prese-
nts search results online and refreshes the results with each let-
ter typed or modified by the user. It also offers real-time auto-
completion of the last query term being typed by the user. These
completions are extracted from the search results obtained by us-
ing the incomplete query (and the primary goal of their work is
to use an efficient index to find those search results), in the order
of decreasing frequency of the term’s occurrence in the search re-
sults. When viewed as a query suggestion system, CompleteSearch
is limited in the sense that it only offers completions of the last
query word instead of suggesting complete queries related to the
incomplete query. Moreover, it requires the user to type at least
two characters of the last query term. Also, using frequency as the
only criterion for ranking the completions is not an optimal choice
as the most frequent completions of the last query word often are
not related to the query terms already typed by the user. How-
ever, the auto-completion feature in their system can be viewed as
a query suggestion system, and hence we consider this method as a
baseline in our experiments.

3. PROPOSED APPROACH

3.1 Problem Setup and Solution Overview
Consider a user u who has an information need I. She trans-

forms the information need into a query Q and starts typing the
query in the query box of a search engine. The user has some infor-
mation need but is not sure what terms to use to formulate a query.
Since the documents indexed by the search engine are not visible
to the user, often the terms selected by the user to formulate the
queries do not lead to good retrieval performance due to the gap
between query-term space and document-term space [14]. To help
the user, information retrieval system can search the query logs to
identify queries similar to the user’s query that have been success-
ful in the past and can suggest such queries to the user. However,
our goal is to offer query suggestions to the user even in scenar-
ios where query logs are not available. In the absence of query
logs, we adopt a document-centric approach by utilizing the docu-
ments in the corpus itself to generate query suggestions on the fly.
We extract and index phrases from the document corpus and when
the user starts typing a query, we utilize these phrases to complete
the partial user query. The completed queries are then offered as
suggestions to the user. In the remainder of this section, we first

describe the phrase extraction process and then discuss how these
phrases can be used to generate query suggestions.

3.2 Phrase Extraction
In order to create a database of phrases that can be used for

completing partial user queries, we extract all N-grams of order
1, 2 and 3 (that is unigrams, bigrams and trigrams) from the doc-
ument corpus. One can also extract higher order N-grams but the
number of possible N-grams increases exponentially with the or-
der N [19, Chapter 4] and hence, is not scalable for any real world
corpus. Further, while extracting N-grams, we need to take spe-
cial care of the stop words. Consider the phrase president of

usa. Each of the possible bi-grams from this phrase (president
of, of usa) starts or ends with a stop word and is thus, an in-

complete phrase. Hence, they are not desired as the resulting query
completions. One possible solution can be to remove all the stop-
words from corpus before extracting N-grams. However, remov-
ing stop-words may also lead to loss of semantics and make the
resulting suggestions harder to understand. For example, compare
president usawith president of usa and president
in usa. If we remove the stop-words, the second and third phrase
will both reduce to the first phrase even though they mean different
things. In order to avoid such difficulties, we use an idea similar to
skip-grams [19, Chapter 4] from natural language processing. In-
stead of skipping over and discarding the adjacent words, whenever
we encounter a stop-word we jump over to the next word and retain
the stop-word so that the resulting phrases do not start or end with
stop words. Thus, in the above example, we will only have one

bi-gram (president of usa). Note that now the order of an
N-gram is not the number of words in the N-gram but the number
of non stop-words.

3.3 Probabilistic Model for Query Suggestion
Consider the time instant when the user has typed first k charac-

ters of the query, which we denote byQk
1 . Note that these k charac-

ters can contain a space character and if it does that means the user
has typed more than one query term. Let P = {p1, p2, . . . , pn}
denote the set of extracted phrases that can be used for generating
query suggestions and let V be the vocabulary of the corpus avail-
able to us. Given the incomplete query Qk

1 , V and P we wish to
construct a set S ⊂ P such that each s ∈ S is a possible comple-
tion for Qk

1 .
Ideally, we want to offer suggestions to the user such that the

queries represent the information need of the user. However, the
only information we have about the user is the incomplete query
Qk

1 . Further, different users having different information needs can
start with same Qk

1 . For example, the queries linux interview

questions and linux installation have the same prefix li-
nux in. Thus, for a given partial query Qk

1 , our task is to select
phrases that can be used for generating possible query suggestions.
To solve this problem, we ask this question: Given a partial query

Qk
1 and a phrase pi ∈ P , what is the probability P (pi|Q

k
1), i.e.,

the probability that the user will eventually type pi after typingQ
k
1?

Once we answer the above question, we can order the phrases by
the probability of their being typed afterQk

1 and use the top ranked
phrases for offering suggestions to the user. We now describe how
to compute P (pi|Q

k
1).

We start by making the observation that at any given instant of
time, Qk

1 can be decomposed as follows:

Q
k
1 = Qc +Qt (1)

where, Qc denotes the completed portion of the query, i.e., the
set of words that the user has typed completely. Note that |Qc| ≥ 0.



Qt is the last word of Qk
1 that the user is still typing. Note that it

may be a complete word or a partial word. Further, |Qt| ∈ {0, 1}.

Using Bayes’ theorem, the probability P (pi|Q
k
1) can be written

as:

P (pi|Q
k
1) =

P (pi)× P (Qk
1 |pi)

P (Qk
1
)

(2)

Further, assuming that the query terms are conditionally inde-
pendent, P (Qk

1 |pi) can be written as:

P (Qk
1 |pi) = P (Qt|pi)× P (Qc|pi) (3)

Using equations 2 and 3, we have:

P (pi|Q
k
1) =

P (pi)× P (Qt|pi)× P (Qc|pi)

P (Qk
1
)

(4)

where, Qt and Qc are as defined in equation (1).
By definition of joint probability, we have:

P (pi)P (Qt|pi) = P (pi, Qt) = P (Qt)P (pi|Qt). (5)

Application of equation (4) to equation (5) yields:

P (pi|Q
k
1) =

P (Qt)P (pi|Qt)P (Qc|pi)

P (Qk
1
)

(6)

Further, we note that Qk
1 and Qt remain the same for all the

phrases given a user submitted partial query. Therefore P (Qt)
and P (Qk

1) are constants for a given user query and thus, can be
safely ignored since we are interested only in the relative ordering
of phrases. Taking these observations into account, equation (6)
reduces to:

P (pi|Q
k
1)

rank
= P (pi|Qt)

︸ ︷︷ ︸

phrase selection probability

× P (Qc|pi)
︸ ︷︷ ︸

phrase-query correlation

(7)

The above equation summarizes our proposed model for query
suggestion. The first component of equation (7) measures the prob-
ability that phrase pi can be typed by the user given that he has
already typed Qt. The second component measures the correlation
between pi and component Qc of the user query. We now describe
how these two probabilities can be estimated.

3.4 Estimating Phrase Selection Probability
Selecting a candidate phrase given a partial word is a two step

process. First find a completion of the partial word and then select
a phrase that contains that completed word. Figure 1 illustrates this
process in terms of a graphical model that can be used to estimate
P (pi|Qt). The root node corresponds to the event that the user has
typedQt – a partial word. This partial word can be completed inm
different ways where m is the number of words in vocabulary that
start with Qt. Let C = c1, . . . , cm be the set of m such possible
word completions represented by corresponding nodes in Figure 1.
Let Pi = pi1, . . . , p1ni

be the set of ni phrases that contain the
completed word ci. Given Qt, each completion ci has a probabil-
ity P (ci|Qt) of being selected. Once ci is selected as a possible
word completion, we select a phrase pij ∈ Pi with the probability
P (pij |ci). In this way, the probability of selecting a phrase given a
partial word is expressed as follows.

P (pij |Qt) = P (ci|Qt)
︸ ︷︷ ︸

term completion probability

× P (pij |ci)
︸ ︷︷ ︸

term to phrase probability

(8)

Figure 1: Graphical depiction of phrase selection process.

Since we have no other information about user’s information
need except for the partial word Qt, we make a simplifying as-
sumption. We assume that phrases in the corpus that are more im-
portant have a higher chance of being used by the user for formu-
lating queries than the less important ones. One way to assess the
importance of phrases is by using their occurrence frequencies in
the corpus. However, this naïve approach has two serious short-
comings:

• In our formulation, the first step in phrase selection is to first
find a completion c of the last query wordQt with a probabil-
ity P (c|Qt) and then select all phrases that contain that com-
pletion. If we use only raw frequencies to compute P (c|Qt),
some of the important, but rare, completions will get sup-
pressed. Hence, while computing P (ci|Qt), we normalize
the frequencies of different completions by their IDF values
as follows.

P (ci|Qt) =
freq(ci)× IDF (ci)

m∑

i=1

freq(cm)× IDF (cm)

(9)

• In general, the frequency of unigrams in the corpus is much
higher than the frequency of bigrams and trigrams. For the
datasets used in this paper, we observe the average frequency
of unigrams to be 15–25 times higher than the average bi-
gram and trigram frequencies. Such large differences in fre-
quency values suppresses the selection of bigrams and tri-
grams as compared to unigrams. Cui et al., [14] also faced
similar problems and suggested using a constant multiplica-
tion factor to normalize the frequencies of bigrams and tri-
grams. Instead of using a constant factor for all phrases,
we employed a normalization factor that normalizes raw fre-
quencies of different order n-grams using the log ratio of
their average frequencies as follows.

freqnorm(order m n-gram p) =
freq(p)

log(avgFreq(m))
(10)

where,
avgFreq(m) is the average frequency of all n-grams of or-
der m.



Using this formulation, the term to phrase probability can be
computed as follows.

P (pij |ci) =
freqnorm(pij)

ni∑

k=1

freqnorm(pki)

(11)

3.5 Estimating Phrase-Query Correlation
The phrase selection component of equation (7) selects phrases

on the basis of the last query word (Qt) only. It does not take into
account the context in which the user has typed Qt. For example,
consider following two partial queries: bill gate and india
gate. The first query is related to Bill Gates and the second query
is about a historical monument in India. For both these queries, the
last word is same and therefore, we will end up with the same set
of phrases for both these queries even though they represent very
different information needs. Clearly, we require a mechanism to
identify whether a given phrase is contextually important or not.

The second component of equation (7) takes into account such
a relationship between a phrase and the user-submitted query. It
represents the probability that the user has typed Qc given that we
know that the selected phrase pi represents the completion of Qc.
In other words, given that pi represents the latter half of the com-
plete query we want to compute the probability that Qc is the first
half of the complete query.

By using the laws of probability, P (Qc|pi) can be written as
follows:

P (Qc|pi) =
P (Qc, pi)

P (pi)
(12)

Here, P (Qc, pi) represents the probability of the joint occurrence
of Qc and pi and P (pi) represents the probability of observing pi
alone. Both these probabilities can be estimated using the corpus
as follows:

P (Qc|pi) =
|DQc

∩Dpi |

|Dpi |
(13)

Here, Dpi and DQc
represent the sets of documents that contain

phrase pi andQc respectively. In order to find the set of documents
containing a particular phrase p, we make a simplifying assumption
and approximate Dp as the set of documents that contain all the
constituent words in phrase p. Mathematically,

Dp ≈
⋂

w∈p

Dw (14)

where Dw is the set of documents containing word w.
This approximation has two important advantages. First, it greatly

simplifies finding the set Dp as all the required sets of documents
containing the constituent words (i.e., Dw’s in equation 14) are
already available in the search engine’s index in the form of post-
ings lists of respective words. Second, it also helps overcome the
data-sparseness problem. As an example, consider the following
three search queries: linux install firefox, install
firefox linux and firefox install linux. All these
queries represent the same information need and are represented
using the same set of terms. However, the ordering of the con-
stituent terms is different in all three queries. Thus, it is possi-
ble that the phrases present in the corpus may have a different or-
dering than what the user has typed and thus, we will miss such
phrases. Further, in the relevant documents these terms might not
always appear together as a phrase. In Section 4, we show that
the baseline method (SimSearch) that relies on such exact phrase
matches performs poorly and is not able to offer any suggestions

Ubuntu TREC

No. of Documents 109,137 210,158
Avg Document Size (words) 378.02 374.26

N-Grams Extracted
Unigrams 114,702 191,123
Bigrams 1,062,204 3,020,118
Trigrams 888,492 2,677,026

Table 1: Different datasets used and their properties. These

datasets differ in number of documents and average document

length (measured in number of words). Number of words in a

document was obtained by using the Unix wc command.

at all for many queries. Decomposing a phrase into its constituent
terms avoids the above problems. By such a formulation, phrases
that contain terms that co-occur frequently with the user query are
given a higher weight. It also helps in making sure that the result-
ing query suggestions have good retrieval capability as the resulting
query suggestions will consist of terms that frequently co-occur.

To summarize our approach, given a user query, the system first
finds all the possible completions of the last query word. These
completions are then used to identify a set of phrases that can be
used for generating possible query suggestions. All the phrases
in this candidate set are then assigned a probability score using
equation 7. The top 10 highest scoring phrases are then presented
to the user after appending to the Qc portion of the user query.

4. EXPERIMENTAL PROTOCOL

4.1 Data Description
We evaluated our proposed query suggestion mechanism using

the following two datasets:

1. TREC: This dataset, available on TREC Disk4, consists of
more than 200,000 news articles published in Financial Times
between years 1991–1994.

2. Ubuntu: This dataset, used in previous research [7], con-
sists of more than 100,000 discussion threads crawled from
ubuntuforums.org, a set of 25 queries and relevance
judgments. The documents contain discussions on various
topics related to Linux and Ubuntu. One motivation for us-
ing this dataset was to test the robustness of the proposed
approach as the text here is much more informal and noisy
as compared to the TREC dataset.

For both the datasets, all the documents were pre-processed to
remove punctuations and all the text was converted to lower case.
N-Grams (order 1, 2 and 3) were extracted as described in Sec-
tion 3. For extracting n-grams, stop words used came from a gen-
eral stop word list of 429 words used in the Onix Test Retrieval
Toolkit1. The number of N-Grams extracted for each dataset along
with some other statistics are summarized in Table 1.

4.2 Baseline Methods
We compare our proposed approach with the following two base-

line methods:

1. Similarity based phrase search (SimSearch): In this method,
the phrase index is searched to find all the phrases that con-
tain the user submitted partial query as a subphrase. The
selected phrases are presented to the user in order of their

1http://www.lextek.com/manuals/onix/stopwords1.html

ubuntuforums.org


Dataset Original Query Type-A Query Type-B Query

Ubuntu

automount hard drive partitions automount automount hard drive part
virtualbox keyboard problem virtualbox virtualbox keyb

wine microsoft office wine wine microso

TREC

falkland petroleum exploration falkland falkland petro
encryption equipment export encryption encryption equip

radioactive waste radioactive radioactive was

Table 2: Examples of queries used in experiments.

occurrence frequency. This method is used by the popular
open source enterprise search server Solr2.

2. CompleteSearch (CompSearch): This method refers to the
query suggestion mechanism implemented in CompleteSearch
search engine [6, 5] (as discussed in the section on related
work).

We do not compare our system with any method that uses query
logs because we strongly believe that such a comparison would
essentially be comparing algorithms for totally different technical
problems and would be unfair.

4.3 Test Queries
In order to compare our proposed approach with the baselines,

we need a set of queries for which the suggestions can be generated.
We evaluated our approach with a set of 40 test queries for each
dataset. For the Ubuntu dataset, queries came from the 70 most
searched for topics on ubuntu forums (provided by ubuntu forums)
and for the TREC dataset, queries from TREC topics 351–400 (title
field) were used. For each dataset, we removed stop words from
each query, discarded all the single word queries and then randomly
selected 20 queries from the remaining queries. Each such query
was then used to generate two different partial queries as follows,
leading to 40 partial test queries for each dataset.

• Type-A Queries: These queries were generated by retaining
only the first keyword of each of the 20 queries.

• Type-B Queries: These queries were generated by retaining
the first keyword of the query followed by the first k char-
acters of the remaining query string (2 ≤ k ≤ length of
the remaining query string). The number k was selected at
random for each query. Note that we use k ≥ 2 because
the CompSearch method requires users to type at least two
characters as discussed in Section 2. The proposed method
however, has no such restriction.

For example, the query correspinding to TREC topic 387 is ra-
dioactive waste. The type-A query for this query is radio-
active and type-B query is radioactive was. This exam-
ple also illustrates the main motivation behind generating two types
of queries. Type-A queries are, in general, broader in scope than
their type-B counterparts. For the query radioactive, all of
radioactive waste management, radioactive wa-

ste disposal etc. could be valid query suggestions. How-
ever for radioactive was, the query suggestion mechanism
should take into account the context in which the user is typing the
last query word and ensure that queries such as radioactive
washington post are not suggested. Some examples of queries
used in our experiments are given in Table 2.

2
http://lucene.apache.org/solr/features.
html#Query

4.4 User Study
Due to the absence of standard test collections for the query sug-

gestion task, we conducted a user study to measure the quality of
the suggestions generated by different query suggestion methods.
For each test query, we collected the top 10 suggestions generated
by the three methods (SimSearch, CompSearch and our proposed
method (Probabilistic)). Evaluation was performed with the help
from 12 volunteers who were our colleagues and were not associ-
ated with the project. All the subjects were experienced users of
search engines and used both web search engines as well as en-
terprise search engines on a daily basis. Each assessor was shown
a randomly selected partial user query from the set of test queries
and lists of query suggestions produced by the three methods. The
order in which the suggestions produced by different methods were
presented to the assessors was randomized for each query and each
evaluator and the assessors did not know which set of suggestions
was generated by which method. The suggestions produced by a
particular method were presented in decreasing order of their re-
spective scores. Each query was evaluated by three unique as-
sessors and each provided evaluations for an equal number of test
queries. For each query suggestion the subjects were asked to as-
sign one rating from among the four possible options that are sum-
marized in Table 3. The final rating for a suggestion was decided
by a majority vote. By a meaningful (and hence relevant) sugges-
tion for a partial query, we mean a query that represents one pos-

sible prediction of the user’s information need as a valid search
query, given the partial query typed by the user. Also, we do not
desire almost duplicate suggestions, or malformed combination of
words (which do not make sense) to appear in the list of sugges-
tions. By designing the four options for rating each suggestion and
by providing a clear guideline to the assessors, we made a best
possible effort to convey the notion of a suggestion being meaning-
ful to our assessors. The final judgments had to be subjective and
we had to depend on our assessors as they are experienced users
of several kinds of search engines and also the query suggestion
features of web-search engines. In total, there were 1906 sugges-
tions evaluated by the assessors and a majority decision (two out of
three assessors assigned the same rating) was obtained for 91.45%
(1743) of the suggestions. Further, 1147 suggestions were assigned
a Y(meaningful) rating by the majority vote and out of these 915
suggestions were judged as Y by all the three assessors. These
inter-assessor agreement results strongly indicate that the notion of
suggestions being relevant or meaningful was considered very con-
sistently among them.

A suggestion for which all the three assessors provided differ-
ent ratings was assigned the rating of “Not Sure". For the pur-
pose of comparing different query suggestion methods, we consid-
ered only suggestions marked as Y to be relevant and suggestions
marked with any of the three remaining ratings were treated as non-
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Rating Meaning

Y Yes, a meaningful suggestion
N No, not a meaningful suggestion, or badly formed

as a query
D An (almost) duplicate suggestion, conveys no new

information
?? Not sure

Table 3: Different rating options available to users and their

meanings.

relevant. We use this information to compare success rates, preci-
sion etc. for the different methods in the following sub-sections.

4.5 Statistical Significance Tests
In order to assess the statistical significance of the results ob-

tained, we used the paired two-sample one-tailed t-test. Statisti-
cally significant improvements over the SimSearch and CompSearch
methods are indicated by S and C, respectively for p < 0.01 (99%
confidence interval) whereas s and c indicate statistically signifi-
cant improvements with p < 0.05 (95% confidence interval) over
SimSearch and CompSearch, respectively.

5. RESULTS AND DISCUSSIONS

5.1 Success Rate of Different Methods
A popular metric to compare the performance of different query

suggestion methods is coverage; it has been used previously to
compare various query suggestion mechanisms [10, 18]. Coverage
of a query suggestion method is defined as the fraction of queries
for which the method is able to offer at least one query suggestion.
However, we feel that coverage is, in general, a relaxed evaluation
metric as it does not take into account the quality of the queries
suggested. What if the queries suggested are not meaningful? As
opposed to the query-log based query suggestion methods that gen-
erally offer frequent past user queries as suggestions, the query log
oblivious methods evaluated in this paper generate suggestions by
combining partial user query with terms/phrases derived from the
corpus and hence, may not always generate meaningful queries.
Also note that for a given partial query, in general, there will be
multiple possible valid completions. We consider a query sugges-
tion method successful for a given partial query if it is able to gen-
erate at least one meaningful suggestion for the partial query. The
Success Rate for a query suggestion method is then defined as the
fraction of queries for which the method was successful.

Table 4 summarizes success rates for different query suggestion
methods on both the datasets. We show results separately for type-
A queries, type-B queries and all queries considered together. We
observe that the proposed method (Probabilistic) is able to generate
at least one meaningful suggestion for all the queries in all cases.
The CompSearch method fails to generate a meaningful sugges-
tion for one type-B query for the TREC dataset. The SimSearch
method on the other hand, performs worst and is not able to offer
any meaningful suggestion for a large number of type-B queries.
The improvements achieved by the Probabilistic and CompSearch
methods over SimSearch were significant statistically. This is be-
cause the SimSearch method relies on finding phrases that contain
the user-submitted partial query as a sub-phrase. However, as dis-
cussed in Section 3, this approach suffers from the data sparseness
problem. Many times it happens that the query terms typed by the
user are not present in the corpus as a phrase even though we may

Ubuntu

SimSearch CompSearch Probabilistic

Type-A 1.00 1.00 1.00

Type-B 0.75 1.00s
1.00s

Overall 0.875 1.00s
1.00s

TREC

SimSearch CompSearch Probabilistic

Type-A 1.00 1.00 1.00

Type-B 0.15 0.95S 1.00S

Overall 0.575 0.975S 1.00S

Table 4: Success Rate of different query suggestion methods

for the two datasets. Superscripts s and S indicate statistically

significant improvements over SimSearch with p < 0.05 and

p < 0.01, respectively (one-tailed t-test).

have many documents in the corpus containing all the query terms.
CompSearch and Probabilistic methods overcome the problem of
data sparseness by using the last query word only to select a set of
candidate phrases.

5.2 Quality of Suggestions
The user study described in a previous sub-section provided us

with the information that whether a particular query suggestion
was meaningful or not. By utilizing these relevance judgments,
we now compare different query suggestion mechanisms for their
ability to generate meaningful query suggestions. Some examples
of suggestions generated by the different methods for some of the
test queries are given in Table 5. The table illustrates some cases
where the CompSearch and SimSearch methods failed to produce
as many meaningful suggestions as our proposed approach. While
for SimSearch failure to produce suggestions can be attributed to
data sparseness as discussed before, poor performance of CompSe-
arch is due to its limited scope as it only searches for most frequent
completions of the last query word.

For a given query, the precision of a query suggestion method is
defined as the fraction of suggestions generated that are meaning-
ful. Note that since an exhaustive set of all possible suggestions
for a given query is not available, recall cannot be computed. Also,
for the query suggestion task, precision is a much more important
metric than recall as the number of suggestions that can be offered
is limited by the screen space. Hence high precision values at top
ranks is favored for this task. Table 6 reports the MAP (mean aver-
age precision) values for different methods. The proposed method
outperforms the two baseline methods, achieving statistically sig-
nificant improvements in almost all the cases. We also show the
precision values achieved by different methods at different ranks
(rank 1 to 10) in Figure 2. We observe that the proposed method
outperforms both the baselines methods in all the cases. The high
MAP and precision values indicate that the proposed method is able
to offer a larger number of meaningful suggestions in comparison
to the baselines. Further, consistently high precision values at top
ranks (≈ 80% till rank 3) indicate that in general, meaningful sug-
gestions are presented at earlier ranks to the user, which is a very
desirable characteristic. Also, the drop in precision values from
rank one to last position is much less for the proposed approach
in comparison to the baselines, illustrating the consistency of our
proposed approach. The strengths of the proposed approach are
displayed specifically by the results for type-B queries where it
comprehensively outperforms both the baselines methods. These



Query = mount Query = falkland

SimSearch CompSearch Prob SimSearch CompSearch Prob

mount mount mount falklands falklands falklands
mounted mounted unable to mount falkland falkland falklands war
mounting mounting mount point type falkland islands falklanders falkland islands
mounts mounts sudo mount falklands war falklands conflict
sudo mount mountpoint able to mount falklands conflict 1982 falklands
unable to mount mountcifs mountpoint 1982 falklands 1982 falklands conflict
system mount mountable try to mount falkland islands govern-

ment
falkland islands govern-
ment

file system mount mounter mount the drive 1982 falklands conflict falklands war in 1982
mount point type mountunmount mount the partition falkland arms 1982 falklands war
system mount point
type

mountpoints file system mount falklanders invasion of the falklands

Query = screen resoluti Query = encryption equip

screen resolution screen resolution screen resolution <No Suggestions Pro-
duced>

encryption
equipment

encryption equipment

screen resolutions screen resolutions screen change the res-
olution

encryption digital equip-
ment

preferences screen
resolution

screen resolution-
refresh

screen native resolu-
tion

encryption office equip-
ment

change screen resolu-
tion

screen resolutioni screen set the resolu-
tion

encryption electronic
equipment

screen resolution set-
tings

screen resolution-
but

preferences screen
resolution

encryption telephone
equipment

login screen resolution screen resolutio screen correct resolu-
tion

encryption equipment and
services

screen resolution hi screen resolu-
tion1280

screen resolution and
refresh

encryption video equip-
ment

screen resolution issue screen resolution-
srefresh

screen low resolution encryption medical equip-
ment

changing screen reso-
lution

screen resolution-
size

screen monitor resolu-
tion

encryption transmission
equipment

screen resolution pref-
erences

screen resolu-
tiondisplay

screen comparing res-
olution

encryption original equip-
ment

Table 5: Examples of suggestions generated by different query suggestion methods.

Ubuntu

SimSearch CompSearch Probabilistic

Type-A 0.4597 0.1638 0.5022C

Type-B 0.2193 0.2309 0.4746SC

Overall 0.3395 0.1974 0.4884SC

TREC

SimSearch CompSearch Probabilistic

Type-A 0.5429 0.2709 0.5697C

Type-B 0.0614 0.2010 0.3975SC

Overall 0.3022 0.2359 0.4836SC

Table 6: Mean Average Precision (MAP) values achieved by

different query suggestion methods for the two datasets. Super-

scripts S and C indicate statistically significant improvements

over SimSearch and CompSearch methods, respectively (one

tailed t-test, p < 0.01).

results assert the superiority of the proposed method in offering
contextually relevant suggestions to the user.

5.3 Retrieval Effectiveness of Suggested Queries
One of the main motivation for query suggestion is to present

users with queries that can lead to improved retrieval performance.
What is the retrieval effectiveness of queries suggested by differ-

Ubuntu

SimSearch CompSearch Probabilistic

Type-A 3.4308 3.7779 3.5282s

Type-B 2.8877 3.7118 4.0856Sc

Overall 3.1592 3.7448 3.8069S

TREC

SimSearch CompSearch Probabilistic

Type-A 4.7781 4.4922 4.8323c

Type-B 1.0497 4.9914 5.5113SC

Overall 2.9139 4.7418 5.1718SC

Table 7: Average clarity scores for queries generated by differ-

ent query suggestion methods for the two datasets. Statistically

significant improvements over SimSearch and CompSearch

methods are indicated by superscripts S(s) and C(c), respec-

tively using a one-tailed t-test with p < 0.01 (p < 0.05).

ent methods and how do the different methods compare with each
other? We try to find an answer to this question in this section.

We utilize query clarity score as proposed by Cronen-Townsend
et al. [12] to measure the retrieval performance of suggested queries.
Clarity score has been shown empirically to correlate positively
with average precision [12] and is also used as a measure of am-
biguity in a query with respect to a collection of documents [11,
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Figure 2: Precision achieved by different query suggestion methods at different rank positions (rank 1 to rank 10) for Ubuntu and

TREC datasets. First and second figures in each row show precision values for type-A and type-B queries respectively. The last

figure in each row shows the precision values for all queries taken together. The proposed probabilistic method outperforms the two

baseline methods in all cases. Also note that the drop in precision values for the proposed method is much less in comparison with

the two baselines.

12]. Specifically, clarity score of a query increases if we add terms
that reduce query ambiguity and it decreases on adding terms that
make the query more ambiguous. Since we are generating sug-
gestions by adding phrases to the partial user query, we expect the
method that is able to select phrases related to the user query to have
a higher clarity score. Note that for both the datasets used in this
paper, relevance judgments are available only for original queries
and not for the suggested queries that are generated by different
query suggestion methods. Once we generate a partial query from
an original topic, the suggested queries for that partial query can
be different from the original topic (in fact diverse suggestions are
desired). Therefore, retrieval effectiveness of the suggested queries
cannot be measured by the available relevance judgments. Hence,
the need for using a query performance predictor (clarity score).

Clarity score for a query is computed as the Kullback-Leibler
divergence between the query language model and the collection
language model. Mathematically, clarity score for a query q with
respect to a collection of documents C is given by

Clarity(q, C) =
∑

v∈V

P (v|q) log
2

P (v|q)

P (w|C)
, (15)

where V is the vocabulary of the collection.
For computing clarity score, we used the Lemur search engine

toolkit3. The query language model was computed using the rele-
vance model 1 as described by Lavrenko and Croft [21]. For each
test query, we computed the clarity scores for all the suggestions
generated by a particular query suggestion method and computed
the average clarity value for resulting suggestions for the query.
This computation is repeated for all the test queries and we re-
port the mean average clarity values achieved by a query suggestion
method. The results are summarized in Table 7.

From the table we observe that the proposed Probabilistic ap-
proach achieves statistically significant improvements over the base-
lines in all the cases except for CompSearch method with type-A
queries for Ubuntu dataset. Here it is important to note that the
SimSearch method failed to generate suggestions for many difficult

3
http://www.lemurproject.org/

queries and both the CompSearch and SimSearch methods gener-
ated less than 10 suggestions for many queries. On the other hand,
the proposed method generated 10 suggestions for all the queries.
Thus, the proposed method is able to offer suggestions for a vari-
ety of queries as well as it is able to generate suggestions without
having an adverse effect on retrieval effectiveness of queries.

6. CONCLUSIONS AND FUTUREWORK
We have shown that meaningful query suggestions can be made

in the absence of query logs with an unsupervised probabilistic ap-
proach using the occurrence of terms and phrases in a corpus of
documents. Experimental results on two different datasets are en-
couraging and our proposed approach achieved statistically signif-
icant improvements over two state-of-the-art baselines. However,
there are several aspects that have been out of the scope of this
work and offer interesting future research directions, which we dis-
cuss below.

1. Our approach is essentially unsupervised and is limited to sug-
gesting queries that are formed by combining a few related phrases
from the corpus. Naturally, our system generates some sugges-
tions that are badly formed and hence are not meaningful as search
queries, although they may yield results as search queries. One
possible future goal would be to ensure that the badly formed com-
bination of phrases are eliminated from the suggestions.
2. Leveraging semantic and ontological information associated
with the phrases would be another possible direction. Once the user
has typed hotel, the system can try to consciously suggest queries
such as hotels in new york, hotels in bangalore,
etc. Use of synonyms and synonymous phrases to enable the sys-
tem to suggest alternatives also needs to be explored.
3. Another interesting aspect that has been out of the scope of this
paper is a systematic approach towards diversifying the suggested
queries such that not only does the search engine suggest meaning-
ful queries but it also suggests queries that cover a diverse range of
concepts and thereby meets the information needs of a broad range
of users.

http://www.lemurproject.org/


4. In this work, we have primarily focused on the effectiveness of
the queries suggested. The target systems for our approach typi-
cally have smaller scale datasets and so for that purpose, the effi-
ciency of our algorithm is not critical, but it will be interesting to
explore how we can produce similarly effective query suggestions
more efficiently than we currently do so that our method can be
applied to a relatively larger scale as well.
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