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Abstract. Recently, there has been significant progress in the development of robust and highly scalable neuro-symbolic de-
scription logic reasoners. However, the field faces challenges arising from diverse design strategies and evaluation methods. We
address the latter challenge by emphasizing the critical requirement for a comprehensive benchmark framework tailored to the
unique evaluation needs of neuro-symbolic description logic reasoners. In this paper, we address barriers that must be overcome
to facilitate the effective evaluation of these reasoners and outline a potential methodology for designing the benchmark frame-
work. This work contributes towards a more systematic and principled evaluation framework for neuro-symbolic reasoning,
highlighting the broader role of benchmarks in advancing the field.
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1. Introduction

Neuro-symbolic Artificial Intelligence (AI) [1, 2] is a promising field that aims to bridge the gap between tra-
ditional symbolic logic and modern neural network-based machine learning. The idea is to combine the strengths
of both approaches while overcoming their weaknesses. The focus of this paper lies within the realm of neuro-
symbolic reasoning. At its core, neuro-symbolic reasoning involves integrating symbolic reasoning, which relies on
structured logic and formal knowledge representation, with neural network-based methods known for their capacity
to process large-scale, unstructured data and learn complex patterns from it. This fusion holds the potential for de-
veloping systems with enhanced performance, explainability, and generalization abilities [3]. It’s important to note
that these approaches, unlike traditional reasoning methods, are not necessarily sound and complete. Instead, they
strike a balance between approximating the precise reasoning capabilities of symbolic systems and harnessing the
robust learning capabilities of machine learning techniques.

However, progress in this field faces significant challenges because neuro-symbolic reasoning is emerging, in
contrast to other areas with extensive research and well-established benchmarks. For instance, several models (Graph
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Neural Networks (GNN) [4], Logic Tensor Networks [5]), methodologies (Inductive Logic Programming [6]) and
innovative ideas (explainable AI [7], zero-shot learning [8]) enrich this field. As a result, existing works in this field
exhibit diversity in techniques, and hence, different methods and criteria are used to evaluate the performance of
neuro-symbolic reasoning systems (see Table 1). The lack of a standardized approach makes it difficult to compare
these systems and make progress in the field. Furthermore, based on the reciprocal relationships between neural and
symbolic components and how they benefit each other, neuro-symbolic reasoning systems, and in general neuro-
symbolic AI systems, as discussed by Henry Kautz, can be categorized into one of the six distinct categories [9].

– Symbolic Neuro Symbolic: In this category, the input and output are represented symbolically, such as with
words or sequences of words. These symbols are converted into vectors using methods like word2vec [10] and
then fed into a neural network for processing.

– Symbolic[Neuro]: Symbolic solvers use neural models internally for some functions, as seen in systems like
AlphaGo [11].

– Neuro|Symbolic: This category involves a refined integration of neural and symbolic approaches, where both
systems collaborate to enhance specific tasks, such as in the case of Neuro-Symbolic Concept-Learner [12].

– Neuro:Symbolic → Neuro: These approaches take symbolic rules as input and compile them during train-
ing, effectively integrating symbolic knowledge into the structure of neural models, as demonstrated in Deep
Learning For Symbolic Mathematics [13].

– NeuroS ymbolic: This category involves transforming symbolic rules into templates for structures within the neu-
ral network, such as Logic Tensor Network [14].

– Neuro[Symbolic]: Refers to the embedding of symbolic reasoning inside a neural engine, such as Graph Neural
Networks (GNN) [4].

Each of these categories represents a unique approach to neuro-symbolic AI, adding an extra layer of diversity to
the advancements in this field.

Drawing inspiration from Jim Gray’s pioneering work [15] on domain-specific benchmarks for databases, our goal
is to tackle the challenge of benchmarking neuro-symbolic reasoners. The primary purpose of such a benchmark
is two-fold. Firstly, it serves as a tool to identify the performance bottlenecks, enabling targeted improvements in
the systems where algorithms are still evolving. Secondly, benchmarks facilitate meaningful comparisons between
various systems, offering insights into their relative strengths and weaknesses. While this paper does not put forth
an alternative benchmark, we highlight the strong need for such benchmarks, including their features, and explain
why they are essential for moving the field forward.

In Section 2, we delve into the recent advancements in neuro-symbolic reasoning, highlighting the challenges
in evaluating and comparing the existing state-of-the-art neuro-symbolic reasoners. Subsequently, in Section 3, we
address the barriers that must be overcome to facilitate the effective evaluation of neuro-symbolic reasoners. Finally,
in Section 4, we outline a potential methodology for designing the benchmark.

2. Neuro-Symbolic Reasoning for Description Logics

In recent years, there have been significant advancements in developing neuro-symbolic reasoners for description
logics (DLs) [16], a formal underpinning for the Web Ontology Language (OWL 2) [17]. While most of these works
predominantly focus on classification and consistency checking [18–20], the other reasoning tasks, such as instance
retrieval, query rewriting, materialization, abduction, and explanation generation, remain relatively unexplored. The
intricacy of these tasks varies significantly, and delving into their complexities offers a promising avenue for further
exploration.

Research in this domain takes an alternative approach to traditional reasoning tasks such as classification and
consistency, breaking them into class subsumption, class membership, and satisfiability tasks. Various techniques
are employed, such as geometric embeddings [21–24] that map ontological relationships to geometric spaces and
emulating logical reasoning through machine learning [25–27]. A comprehensive overview and detailed insights
into the state-of-the-art neuro-symbolic reasoning landscape are discussed in [19, 20]. Regarding other categories,
a limited amount of work, such as that for e-commerce search [28], merges neuro-symbolic reasoning with query
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rewriting. This involves a Knowledge Graph (KG) [29] enhanced neural network approach that integrates auxiliary
knowledge from a product Knowledge Graph, enhancing semantic understanding of user queries and improving
query reformulation.

The existing traditional benchmarks such as LUBM (Lehigh University Benchmark) [30], UOBM (University
Ontology Benchmark) [31], and OWL2Bench [32] lack suitability for evaluating neuro-symbolic reasoners due to
their narrow focus on conventional reasoning tasks. Traditional evaluations of reasoning systems often rely on met-
rics such as reasoning time, which may not align well with the evaluation requirements of neuro-symbolic reasoners.
Although the ontologies of these benchmarks, along with those from the OWL Reasoner Evaluation (ORE) Com-
petition [33], can serve as initial datasets for the proposed neuro-symbolic benchmark framework, these datasets
fall short of addressing the distinct challenges posed by neuro-symbolic reasoning. To our knowledge, no bench-
marks or evaluation frameworks have been designed to evaluate and compare neuro-symbolic reasoning systems.
Most reasoner evaluations are performed on different publicly available ontologies, including but not restricted to
SNOMED CT1, Gene Ontology (GO)2, and Galen3, as well as other ontologies available in public repositories such
as DBpedia [34], YAGO [35], Wikidata [36], Claros4, NCBO Bioportal5, and AgroPortal6. However, these offer a
limited set of ontologies for evaluation, which does not cover the full spectrum of possible scenarios.

As discussed in Section 1, neuro-symbolic approaches encompass a range of evaluation methodologies and rea-
soning techniques. This diversity becomes evident in Table 1, highlighting the necessity for a dedicated benchmark
to systematically and comprehensively assess the performance of neuro-symbolic reasoning systems. The table re-
veals the utilization of subsets of description logics, such as ALC and EL++, and various OWL 2 profiles like EL
and RL [37]. Some works also incorporate RDF and RDFS into their reasoning techniques, underlining the diver-
sity in the supported ontology languages and profiles, which implies that existing works handle different levels of
complexity. Furthermore, the table showcases the variety of reasoning tasks undertaken, different datasets utilized,
and the diverse metrics employed for evaluating each approach. The summary column in Table 1 highlights the
differences in techniques used by each work. It is important to note that the paper does not aim to provide an ex-
haustive list of all the existing work. Instead, it emphasizes the variations in reasoning and evaluation approaches.
The collective representation highlights the pressing need for a standardized benchmark to facilitate fair and con-
sistent comparisons, thereby advancing the progress of neuro-symbolic reasoning research. The table reveals that
similar works may differ significantly by employing distinct metrics and datasets to evaluate their contributions. For
instance, consider the works of Makni et al. [27] and Ebrahimi et al. [26]. Both studies focus on RDFS entailment
reasoning, aiming to replicate deductive reasoning processes. However, they adopt different metrics and datasets
to assess the effectiveness and performance of their approaches. Such variations in evaluation criteria can lead to
diverse insights and perspectives on the contributions within the field.

Paper Logic Reasoning
Task

Datasets
Used

Metrics Summary of Approaches
Used

ELEm [21] EL++ Subsumption GO Hits@n,
AUC, Mean
Rank

To capture entity relationships,
embeddings were created by
representing Concepts as n-balls
and the relations as translation
vectors between the centers of
each Concept ball. The embed-
dings were utilized to predict
protein-protein interactions.

1https://bioportal.bioontology.org/ontologies/SNOMEDCT
2https://bioportal.bioontology.org/ontologies/GO
3https://bioportal.bioontology.org/ontologies/GALEN
4https://www.clarosnet.org
5https://bioportal.bioontology.org/
6http://agroportal.lirmm.fr/

https://bioportal.bioontology.org/ontologies/SNOMEDCT
https://bioportal.bioontology.org/ontologies/GO
https://bioportal.bioontology.org/ontologies/GALEN
https://www.clarosnet.org
https://bioportal.bioontology.org/
http://agroportal.lirmm.fr/
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EmEL++

[22]
EL++ Subsumption SNOMED

CT, Anatomy,
GO, Galen

Hits@n,
AUC, Median
Rank, 90th

percentile
rank

Extended ELEm with relation
inclusion and role chains. Also
introduced negative samples for
training.

EmEL-V
[23]

EL++ Subsumption SNOMED
CT, GO,
Galen

Top@n,
Median
Rank, 90th

Percentile
Rank

Extended EmEL++ to include
many-to-many relationships

BoxEL
[24]

EL++ Subsumption Anatomy,
GO, Galen

Hits@n,
AUC, Mean
Rank

To capture entity relationships,
mapped concepts as boxes and
deals with the limitations of n-
ball [21–23] based embeddings.

Box2EL
[38]

EL++ Subsumption,
Role As-
sertion and
Deductive
Reasoning

Anatomy,
GO, Galen

Hits@n,
AUC, Me-
dian, Mean
Rank

Maps both concepts and roles as
boxes, and models inter-concept
relationships using a bumping
mechanism.

Özçep et al.
[39]

ALC Concept
Membership

NA NA Embeds Concepts in the ontol-
ogy as convex regions in vector
spaces.

E2R [40] ALC Concept
Membership

LUBM Hits@n,
Mean Rank,
MRR

Aiming to preserve the logical
structure, proposed embeddings
in the quantum space.

Makni and
Hendler
[27]

RDFS Entailment
Reasoning

LUBM and
Scientist
dataset cre-
ated from
DBpedia

Precision, Re-
call, and F1
Score

The evaluation focused on as-
sessing noise tolerance by em-
ploying an encoder-decoder ar-
chitecture to translate input
RDF graph embeddings into
corresponding inference graph
embeddings.

Ebrahimi et
al. [41]

RDFS Query-based
Classifica-
tion

Created from
Linked Data
Cloud and
Data Hub
websites

Precision, Re-
call, and F1
score

Explored the capabilities of
end-2-end memory networks.
The model’s capability for
multi-hop reasoning is demon-
strated. The use of normalized
embeddings support transfer.

Ebrahimi et
al. [26]

RDFS
and
EL+

Entailment
Reasoning

Synthetic
Data and
LUBM

Exact Match-
ing Accuracy

Utilized pointer networks for
learning the sequential applica-
tion of inference rules used in
many deductive reasoning algo-
rithms.

Hohenecker
and
Lukasiewicz
[42]

OWL 2
RL

Entailment
Reasoning

Claros, DB-
pedia, UMLS,
and Synthetic
Data

Accuracy Developed a deep learning-
based model called Recursive
Reasoning Networks (RNN).
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Eberhart et
al. [25]

EL+ Ontology
Completion
(concept in-
clusions and
existential
restrictions)

Synthetic
Data and
SNOMED

Precision, Re-
call, and F1
Score

Showcases completion rea-
soning behavior using various
LSTM neural networks to learn
reasoning patterns, employing
three distance measures to
assess prediction accuracy.

Makni et al.
[43]

RDFS Explainable
Entailment
Reasoning

LUBM and
real-world
scholarly
dataset

Accuracy Built upon the previous work
[27] for generating explanations
for the derived conclusions by
taking the RDF graph and in-
ferred triples as input and the
explanations as the target.

Hohenecker
and
Lukasiewicz
[44]

RDF Concept
Membership
and Relation
Prediction

LUBM,
UOBM,
Claros, DB-
pedia

F1 Score and
Accuracy

Proposed Relational Tensor
Network (RTN). Embeddings
of the individuals are com-
puted by applying RTNs on
the Directed Acyclic Graph
representation of the ontology
(including the inferences).

Farzana et
al. [28]

RDF Query
pruning
and com-
plete query
rewriting

Created from
user search
logs from
eBay Inc.

Precision,
Recall, and
F Score,
and Query
Accuracy

Proposes a Knowledge Graph
(KG) enhanced approach for
query rewriting in e-commerce,
leveraging RDF2Vec entity em-
beddings, entity types, cate-
gory information, and entity fre-
quency extracted from a product
KG.

OWL2Vec*
[45]

SROIQ Concept
membership
and concept
subsumption

HeLis,
FoodOn, GO

MRR and
Hits@n

Ontologies are transformed into
RDF graphs, and Word2Vec is
utilized on the resulting paths.
The training dataset comprises
three documents: structural, lex-
ical, and a combination of both,
enhancing entity interrelation
understanding compared to ear-
lier Word2Vec methodologies.

Table 1: Overview of Variations in Neuro-Symbolic Reasoning and Evaluation Approaches

To further highlight the diversity in the current approaches, we classify the works mentioned in Table 1 into one
of the six distinct categories discussed in Section 1. [45] involves converting the symbolic input, ontologies, and
RDF graphs, to vectors (Symbolic Neuro Symbolic). [25–27, 41, 43, 44] take symbolic reasoning rules as input and
compile them during training (Neuro:Symbolic] → Neuro), integrating symbolic knowledge into neural models.
[21–24, 38–40] embed symbolic reasoning inside neural engines, representing symbolic information in geometric
or vector spaces and employing neural methods for reasoning tasks (Neuro[Symbolic]). [28] falls into the category
involving a refined integration of neural and symbolic approaches to enhance query rewriting (Neuro|Symbolic).
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3. Desiderata for Benchmarking Neuro-Symbolic Reasoners

Creating an effective benchmark demands careful consideration of critical principles such as simplicity for acces-
sibility, portability for impartial assessments across various approaches, scalability to accommodate diverse system
sizes, and relevance to reflect practical challenges in benchmark scenarios [15]. However, the evaluation of neuro-
symbolic reasoners presents its own set of distinctive challenges. Given the field’s novelty, state-of-the-art solutions
do not approach such challenges systematically. Therefore, we advocate below the issues that should be prioritized
in constructing a fair neuro-symbolic reasoning benchmark.

1. Diverse benchmark scenarios
To effectively evaluate neuro-symbolic reasoners, the benchmark must incorporate diverse scenarios that mir-
ror the complexity and variety encountered in real-world applications. This approach ensures a thorough as-
sessment of the reasoners’ capabilities across different contexts. Key aspects to consider include:

– Variety of Ontologies: The benchmark should encompass a range of ontologies differing in size, profile, and
axiom types. This includes:

* Size and Complexity: Include ontologies with varying sizes and complexities in both assertional knowl-
edge (ABox) and terminological knowledge (TBox) to evaluate how reasoners handle different levels of
detail and scope.

* OWL 2 Profiles: Use ontologies that adhere to various OWL 2 profiles (such as EL, QL, RL, and DL) to
test the reasoners’ ability to handle different levels of expressiveness.

* Axiom Types: Incorporate different types of axioms (such as subclass relations and property restrictions)
and their combinations to assess how well the reasoners manage diverse logical constructs.

– Specific and Generic Reasoning Tasks: Benchmark scenarios should include both specific reasoning tasks
and generic information needs:

* Specific Reasoning Tasks: Design tasks that test particular reasoning capabilities, such as classification,
consistency checking, and instance retrieval. These tasks enable micro-benchmarking and provide in-
sights into the strengths and limitations of individual reasoners.

* Generic Information Needs: Include tasks that assess the reasoners’ ability to handle complex and broader
reasoning scenarios, such as evaluating how well the reasoners can address multi-step queries that involve
integrating diverse information sources and applying both symbolic rules and neural network-derived
insights. This includes testing the reasoners’ ability to synthesize and leverage contextual information to
generate coherent and relevant responses.

– Real-World Applicability: Ensure that benchmark scenarios reflect real-world use cases:

* Real-World Ontologies: Analyze and incorporate real-world ontologies and existing benchmarks to cap-
ture practical challenges and scenarios.

* Scalability and Realism: Design scenarios that not only address current requirements but also scale be-
yond them to foster technological advancement and future-proof the evaluation process.

2. Introducing controlled inconsistencies
Incorporating controlled inconsistencies into benchmark design presents a significant challenge but is essential
for evaluating the robustness of neuro-symbolic reasoners. Controlled inconsistencies should be introduced in
a deterministic manner to assess how well the systems handle and resolve contradictions. Key aspects to
consider include:

– Types of Inconsistencies:

* Structural Inconsistency: Introduce structural inconsistencies by creating contradictions in the ontological
hierarchy or relationships. For example: If the ontology specifies that the entities ‘Male‘ and ‘Female‘
are disjoint classes, add instances in the ABox that are classified as both ‘Male‘ and ‘Female‘. This tests
the system’s ability to detect and resolve structural conflicts. Similarly, create inconsistencies by defining
contradictory class hierarchies or property restrictions that violate the logical constraints of the ontology.
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* Semantic Inconsistency: Introduce semantic inconsistencies by modifying entity names or attributes to
introduce ambiguity or slight deviations. For example: Change names or attributes in a way that cre-
ates near-identical but distinct instances, such as altering “John” to “Jonh” to test how well the system
identifies and resolves semantic conflicts. Introduce synonyms or typographical errors that may lead to
semantic ambiguities and test how the system manages these issues.

– Reproducibility and Control:

* Deterministic Generation: Ensure that the process of generating inconsistencies is deterministic, allowing
for consistent reproduction of test scenarios. This is crucial for evaluating the effectiveness of the system’s
handling of inconsistencies.

* Controlled Environment: Design mechanisms to introduce inconsistencies in a controlled manner, avoid-
ing randomness that could obscure the evaluation of specific reasoning capabilities.

Note that existing benchmarks may lack the capability to introduce generic inconsistencies effectively or in
a contextually relevant manner. This highlights the need for novel approaches to benchmark design. Tradi-
tional generative AI models, such as Large Language Models, may not be well-suited for creating controlled
inconsistencies. This underscores the unique requirements for benchmark design that effectively simulates
real-world contradictions. Incorporating controlled inconsistencies into the benchmark will provide a deeper
understanding of a reasoner’s robustness and its ability to manage and resolve conflicts, reflecting the com-
plexity of real-world scenarios where inconsistencies are prevalent.

3. Input representation for benchmarking
A critical aspect of benchmarking neuro-symbolic reasoners is the representation of input data. This involves
ensuring that ontological knowledge, both ABox (assertional knowledge) and TBox (terminological knowl-
edge), is formatted in a manner that various reasoning systems can effectively process. This flexibility ensures
comprehensive and realistic evaluation conditions, enabling the assessment of reasoning systems across the
spectrum of neuro-symbolic methodologies.

– Ontology Formats: The benchmark should support multiple ontology formats such as RDF/XML7, Turtle8,
and Manchester OWL Syntax9, among others. This ensures compatibility with a wide range of systems that
may require specific formats.

– Axiom Format: While some neuro-symbolic systems may utilize embedding techniques to transform on-
tological entities and relationships into continuous vector spaces, others might directly process axioms in
their logical form. For instance, certain systems might require axioms in a normalized form as per the EL++

profile. Additionally, some approaches may require axioms to be in triple format. Therefore, the benchmark
should accommodate these varying requirements by providing tools for transforming and normalizing on-
tological data as needed.

– Pre-embedded Entities: Some systems may necessitate entities represented as embeddings, using models
such as BERT [46] or other neural embeddings such as TransE [47]. The benchmark should offer pre-
embedded entity representations, ensuring compatibility with these methods and enabling comprehensive
evaluation across different representation techniques.

– Dataset Splits: The benchmark should facilitate the generation of dataset splits tailored to diverse testing
needs, such as train-test-validation splits. This enables a thorough evaluation of a system’s learning and
generalization capabilities across different segments of data. Properly managed splits ensure that the per-
formance metrics accurately reflect the system’s ability to handle unseen data and prevent overfitting.

– Domain Agnostic Datasets: To assess a system’s understanding of logical semantics independently of spe-
cific domain knowledge, the benchmark should have the capability to generate domain-agnostic datasets.
This allows for evaluation focused on the system’s ability to interpret and apply logical rules universally
rather than relying on domain-specific information.

7https://www.w3.org/TR/rdf-syntax-grammar/
8https://www.w3.org/TR/turtle/
9https://www.w3.org/2007/OWL/wiki/ManchesterSyntax

https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/turtle/
https://www.w3.org/2007/OWL/wiki/ManchesterSyntax
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4. Assessment of the deductive capabilities of existing approaches
In the trajectory towards developing a new generation of reasoners that effectively harness the potential of
both neural networks and logical reasoning, a foundational requirement involves conducting an equitable as-
sessment of state-of-the-art solutions. This assessment provides insights into the present capabilities of these
approaches and illuminates the trajectory of the field’s future development. Evaluating these aspects ensures
that the reasoners can generalize beyond specific datasets and apply logical rules consistently across different
domains. The key points of this assessment include:

– Soundness and Completeness: Traditional deductive reasoners are sound and complete, meaning they pro-
duce correct and exhaustive inferences based on given axioms. Evaluating whether neuro-symbolic reason-
ers can achieve similar standards is critical.

– Generalization Capabilities: Deductive reasoners should be able to work across any ontology from any do-
main. This includes verifying that the reasoners can generalize logical rules universally and not be confined
to specific datasets or domains. For instance, a rule stating "if A is a subclass of B and B is a subclass of C,
then A is a subclass of C" should apply universally, irrespective of the specific terms involved. This ensures
the systems can apply logical rules consistently across different domains.

– Scalability and Efficiency: Assessing the scalability and efficiency of these reasoners in handling large and
complex ontologies is essential. Traditional deductive reasoners are designed to handle extensive datasets
and intricate logical structures, which serve as a benchmark for emerging neuro-symbolic systems. Under-
standing how these models perform under varying degrees of complexity and scale can guide the develop-
ment of more robust and versatile reasoning systems.

– Handling Noise and Inconsistent Data: When evaluating the deductive capabilities of these reasoners, it is
crucial to consider how well they handle noise and inconsistent data. Real-world applications often involve
datasets with inaccuracies, ambiguities, and inconsistencies that can challenge the reasoning process. As-
sessing a system’s ability to manage and mitigate the impact of such issues provides valuable insights into
its robustness and practical applicability. This includes evaluating how well the system maintains soundness
and completeness in the presence of noisy or conflicting data and its effectiveness in adapting to varying
degrees of data quality and integrity.

When assessing deductive reasoning capabilities and comparing them with conventional deductive reasoners,
it is advantageous to also include neural-based approaches, such as large language models, in the evaluation
framework. While neural methods may not always excel in every aspect of deductive reasoning, incorporating
them as a baseline can offer valuable comparative insights. This approach not only underscores the benefits
of neuro-symbolic methods, which integrate both neural and symbolic reasoning, but also provides a more
comprehensive understanding of the strengths and potential synergies between different reasoning paradigms.

5. Success metrics and key performance indicators
In order to accurately measure the performance of neuro-symbolic reasoners, the benchmark must support a
range of metrics and key performance indicators (KPIs) that capture various aspects of system performance.
Standard metrics commonly used in evaluation include:

– Accuracy, Precision, Recall, and F1-Score: These metrics provide insights into the classification perfor-
mance of neural components, assessing how well the system identifies correct versus incorrect predictions.
That is, giving insights into how accurately the system produces only correct inferences (soundness) and
whether it generates all possible correct inferences based on the given axioms (completeness).

– Mean Reciprocal Rank (MRR) and Hits@K: These are used to evaluate ranking tasks, measuring the posi-
tion of correct answers in a ranked list of predictions. They help assess the effectiveness of the system in
retrieving relevant information.

– Scalability Metrics: Metrics such as processing time and memory usage that evaluate how well the system
handles large and complex datasets.

While these standard metrics are essential for evaluating traditional aspects of system performance, there
remains a need for developing new metrics tailored to the unique characteristics of neuro-symbolic reasoning.
Current benchmarks might not fully capture critical aspects such as:
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– Robustness to Noise and Inconsistent Data: Evaluating how well the system manages inaccuracies, ambi-
guities, and inconsistencies in real-world data. This requires metrics that measure the impact of noisy or
conflicting data on performance and the system’s ability to maintain robustness.

– Inference Generation Efficiency: Metrics that assess the system’s capability to generate all inferences in
a single run, while ensuring system soundness, measuring computational efficiency and the number of
iterations required.

– Explanatory Capabilities: Evaluating the quality and usefulness of explanations provided by the system for
its inferences. This includes measuring the clarity and completeness of explanations, which is crucial for
transparency and user trust.

– Generalization Across Domains: Metrics to assess how well the system transfers reasoning capabilities
across different domains, ensuring consistent performance and applicability in varied contexts.

– Embedding Quality: For systems that use embeddings, metrics evaluate how well embeddings capture log-
ical relationships and nuances. This includes assessing the embeddings’ effectiveness in preserving logical
structures and supporting accurate inferences.

The inclusion of these novel metrics, alongside traditional ones, ensures a comprehensive evaluation of neuro-
symbolic reasoners. This approach provides deeper insights into the performance and limitations of current
systems, guiding future improvements and research directions.

6. Adaptability
In the rapidly evolving field of neuro-symbolic reasoning, the benchmark’s adaptability is crucial for ensuring
its relevance and effectiveness. The benchmark should be designed to accommodate the following aspects:

– Continuous Updates: The benchmark should be capable of integrating new tasks and methodologies as they
emerge. This involves regularly updating the benchmark to reflect the latest advancements and challenges
in neuro-symbolic reasoning.

– Ongoing Review and Feedback: Regular reviews and updates based on the latest research and feedback from
the community are essential to keep the benchmark aligned with current practices and real-world needs.

4. Proposed Methodology for Designing the Benchmark

In this section, we propose one of the possible methodologies to design a benchmark comprising of the objectives
outlined in Section 3. The methodology involves the following key steps:

1. Generating Diverse Benchmark Scenarios: The initial step towards creating a benchmark involves curating
datasets that cover a wide range of benchmarking scenarios. One approach is to start with a study of existing
neuro-symbolic description logic reasoners, beginning with basic ontology profiles like RDFS and gradually
progressing to more complex ones such as OWL 2 EL and OWL 2 DL. This process includes evaluating
existing datasets across various models and systems, comparing results with traditional reasoning systems like
Konclude [48], and identifying performance variations. This analysis can provide insights about the datasets
that prove critical for existing systems. We can then focus on generating synthetic datasets that replicate these
patterns at various scales and complexities, ensuring coverage of diverse ontology constructs and reasoning
tasks.

2. Introduction of Controlled Inconsistencies: After generating the datasets, the next step is to introduce con-
trolled inconsistencies, similar to those discussed in desiderata 2 of Section 3. This approach allows for the
evaluation of how effectively the system handles and resolves these inconsistencies.

3. Input formats: One essential benchmarking feature could be support for various OWL and RDF serialization
formats, such as RDF/XML 10 or OWL/XML 11. This capability would allow the tool to handle ontologies
in any input format and convert them into the required format, facilitating seamless integration and testing.

10https://www.w3.org/TR/rdf-syntax-grammar/
11https://www.w3.org/TR/owl-xmlsyntax/

https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/owl-xmlsyntax/
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Additionally, incorporating options for generating different dataset splits and profile-specific features, like
generating axioms in normal form for the EL++ profile, can further enhance the tool’s versatility and effec-
tiveness in benchmarking neuro-symbolic reasoning systems.

4. Evaluation of deductive capabilities: Traditional reasoners often struggle with inconsistent ontologies, under-
lining the importance of starting with consistent ontologies. Therefore, generating inconsistencies is kept as a
separate step in the benchmarking process. Simultaneously, it’s crucial to evaluate the features attributed to the
neural aspect of the system, such as learning capabilities, repair abilities, and scalability. This involves assess-
ing performances based on handling ontologic1al complexities, scalability, and overall performance compared
to traditional reasoning systems. Evaluating performances after introducing controlled inconsistencies high-
lights the benefits and results obtained in the presence of inconsistencies, emphasizing deductive prowess
and unique contributions of the neural aspect in neuro-symbolic reasoning, showcasing the system’s overall
capabilities comprehensively.

5. Metric Design: The existing standard learning metrics, such as accuracy, precision, and F1 score, only provide
an overall idea of the efficacy of the systems. However, these systems need a thorough analysis, emphasiz-
ing areas well-supported by systems and areas needing improvement, such as handling different ontological
constructs. These metrics should encompass not only deductive capabilities but also adaptability to diverse
scenarios and overall efficacy in handling complex neuro-symbolic reasoning tasks.

This methodology outlines a foundational approach to benchmark design that can be adapted and expanded to
include more expressive profiles. It provides a systematic starting point for addressing the challenges in neuro-
symbolic reasoning, with the flexibility to evolve and incorporate additional complexity and features as the field
progresses.

5. Conclusion

We highlighted the significant need for a comprehensive benchmark framework to tackle the challenges tied to
evaluating neuro-symbolic description logic reasoning systems. Merging symbolic logic and neural network-based
machine learning brings great promise, but the lack of common evaluation methods has held back progress in the
field. By underlining the importance of creating benchmarks, our aim for the future is to establish a structured way
of evaluating these systems that can drive the field forward.
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