
Automatic Detection of Pseudo-codes in Scholarly
Documents Using Machine Learning

Suppawong Tuarob†, Sumit Bhatia†, Prasenjit Mitra†‡, C. Lee Giles†‡
†Computer Science and Engineering, ‡Information Sciences and Technology

Pennsylvania State University, University Park, PA 16802, USA
suppawong@psu.edu, sumit@cse.psu.edu, pmitra@ist.psu.edu, giles@ist.psu.edu

Abstract—A significant number of scholarly articles in com-
puter science and other disciplines contain algorithms that
provide concise descriptions for solving a wide variety of compu-
tational problems. For example, Dijkstra’s algorithm describes
how to find the shortest paths between two nodes in a graph.
Automatic identification and extraction of these algorithms from
scholarly digital documents would help enable automatic algo-
rithm indexing, searching, analysis and discovery. An algorithm
search engine, which identifies pseudo-codes in scholarly docu-
ments and makes them searchable, has been implemented as a
part of CiteSeerX suite. Here, we illustrate the limitations of the
start-of-the-art rule-based pseudo-code detection approach, and
present a novel set of machine learning based techniques that
extend the previous method.

I. INTRODUCTION

Algorithms are ubiquitous in the Computer Science and
related literature. They offer concise stepwise instructions
for solving many computational problems such as searching,
sorting, hashing, clustering, decoding, machine learning, etc.
Furthermore, in various fields other than Computer Science,
efficient solutions to important problems involve transforming
the problem into an algorithmic one, often using fairly standard
algorithms from other fields. For example, algorithms for
stock portfolio optimization are used for diversifying search
results in information retrieval systems [1]. Likewise, in Bio-
informatics Hirschberg’s algorithm [2] is widely used to find
maximal global alignments of DNA and protein sequences.
A thorough knowledge of state-of-the-art algorithms is also
crucial for developing efficient software systems.

Conference No. of Algorithms
SIGIR 75

SIGMOD 301
STOC 74
VLDB 278
WWW 142

TABLE I. APPROXIMATE NUMBER OF ALGORITHMS PUBLISHED IN
COMPUTER SCIENCE CONFERENCES 2005 - 2009.

A. Algorithms in Scholarly Documents

Researchers are constantly developing new algorithms to
either solve new problems that have not been solved before,
or algorithms that improve upon the existing ones. Often,
researchers report their new algorithms in scientific publica-
tions. Bhatia et al. [3] provide an estimate of the number
of algorithms published in some major computer science
conferences during 2005 - 2009 which we reproduce here
(Table I) for reference. With dozens of new algorithms being

reported in these conferences every year, it is crucial to have
systems that automatically identify, extract, index and search
the ever increasing collection of algorithms, both new and
old. Such systems can prove to be useful to researchers and
software developers looking for cutting-edge solutions to their
problems.

Finding well-known standard algorithms is not difficult,
as they are usually already cataloged and made searchable,
especially those in online catalogs. We define a standard
algorithm as an algorithm that is well known and is usually
recognized by its name. Examples of standard algorithms
include Dijkstra’s shortest-path algorithm, Bellman-Ford algo-
rithm, Quicksort algorithm, and Knuth-Morris-Pratt algorithm.
Standard algorithms are usually collected and cataloged manu-
ally in algorithm textbooks (e.g. [4]), encyclopedias (especially
the ones available online such as Wikipedia1), and websites
targeted at computer programmers (e.g. Rosettacode.org2). As
an initial survey, we parsed Wikipedia algorithm pages in
2010, and found that roughly 1,765 standard algorithms are
cataloged in Wikipedia.org. The National Institute of Standards
and Technology (NIST)3 also has a dictionary of over 289 stan-
dard algorithms. However, unlike these well-known standard
algorithms, newly published algorithms are not cataloged by
the sources mentioned above, because they are simply too new
and too many. The explosion of newly developed algorithms
in scientific and technical documents makes it difficult to
manually catalog them.

Manually searching for these newly published algorithms
is a nontrivial task. Researchers and others who aim to
discover efficient and innovative algorithms would have to
actively search and monitor relevant new publications in their
fields of study in order to keep abreast of latest algorithmic
developments. Having to read entire documents would be
tedious. The problem can become even more aggravated if
algorithm searchers are novices in document search, especially
those who use poor search keyword(s). Thus, we propose
automatic identification and extraction of algorithms from
digital documents.

B. State-of-the-Art in Algorithm Detection

Identifying and extracting various informative entities from
scholarly documents is an active area of research. For al-
gorithm detection, Bhatia et al. [5] briefly describe methods

1http://www.wikipedia.org/
2http://rosettacode.org/wiki/Rosetta Code/
3http://xlinux.nist.gov/dads/

Fig. 1. Example pseudo-code

Fig. 2. Example pseudo-code without a caption

for automatic detection of pseudo-codes in Computer Science
publications. Their method assumes that each pseudo-code
is accompanied by a caption. An example of a pseudo-code
with a caption is given in Figure 1. Such a pseudo-code can
then be identified using a set of regular expressions to detect
the presence of the accompanied caption [3], [5]. Such an
approach, however, is limited in its coverage due to its reliance
on the presence of pseudo-code captions and wide variations
in writing styles. From our dataset (DS2) of 258 scholarly
documents (see Sect. III), we found 275 pseudo-codes, 25.8%
(71 out of 275) of which did not have an accompanied caption.
Figure 2 shows an example of a pseudo-code without a caption.
Thus, these pseudo-codes will remain undetected by their
approach.

Since algorithms represented in documents do not conform
to specific styles, and are written in arbitrary formats, this
becomes a challenge for effective detection and extraction.
Here we improve the performance of pseudo-code detection
by capturing both pseudo-code with and without captions.

C. Our Contributions

This work has the following key contributions:

1) We propose three methods for detecting pseudo-codes
in scholarly documents, including an extension of the
existing rule based method proposed by Bhatia et al.
[5], one based on machine learning techniques, and
a combination of these two.

2) We use two datasets of scholarly documents selected
from CiteseerX repository: one for identifying rules
and features, one for evaluation (the datasets are
available for research).

3) We evaluate our proposed methods on a dataset
of 258 scholarly PDF documents selected from the
CiteseerX repository.

II. BACKGROUND AND RELATED WORK

Identifying and extracting informative entities such as
mathematical expressions [6]–[10], tables [11]–[14], and fig-
ures [15], [16] from documents has long been extensively
studied. Kataria et al. [16] employ image processing and Op-
tical Character Recognition (OCR) approaches for automatic
extraction of data points and text blocks from 2-D plots.
They also propose a way to index the extracted information
and make it available through a search interface to the end
user. Liu et al. [14] present TableSeer, a method which au-
tomatically identifies and extracts tables in digital documents.
BioText4 search engine, a specialized search engine for biology
documents, also offers the capability to extract figures and
tables [17]. Bhatia et al. [3], [5] propose a set of methods
used for detecting document-elements, e.g. tables, figures, and
algorithms. Their methods rely on the assumption that the
document-elements are presented along with captions. They
detect the presence of a document-element by detecting the
corresponding caption using a set of regular expressions. Bha-
tia et al. [3] propose an algorithm search engine for software
developers. Their system collects pseudo-codes available in
scholarly documents and make them searchable via full text
search powered by Solr/Lucene5. Our work here extends their
pseudo-code detection approach.

III. DATASETS

Two datasets are used in this paper. The first dataset (DS1)
contains 100 scholarly documents selected from CiteseerX
repository, consisting of diverse types of pseudo-codes. This
dataset is used to construct rules and regular expressions for
our rule based methods, and determine feature sets for our
machine learning based methods. The other dataset (DS2)
consists of 258 scholarly PDF documents randomly selected
from CiteseerX repository. This dataset consists of 275 pseudo-
codes, and is used for validating our methods.

A. Preprocessing

Textual information is extracted from each PDF document
using PDFBox6. We experiment across text extraction tools
(i.e. PDFTextStream7, Xpdf8, TET9, and PDFBox), and find
PDFBox to be the most suitable since it best preserves line
sequences. We modify the source code in PDFBox to also
extract font size information from each text line.

B. Data Labeling

A document is treated as a sequence of text lines, each
identified with a line number. We manually label each line as
following:

0 Not part of pseudo-code content
1 Part of pseudo-code content

Note that a pseudo-code caption is treated as pseudo-code
content. A line labeled with 1 is said to be a positive line,

4http://biosearch.berkeley.edu
5http://lucene.apache.org/solr/
6http://pdfbox.apache.org/
7http://snowtide.com/PDFTextStream
8http://www.foolabs.com/xpdf
9http://www.pdflib.com/products/tet/

otherwise it is negative. A pseudo-code is defined as a set of
consecutive positive lines.

IV. OUR APPROACHES

<CAPTION> ::= <DOC_EL_TYPE> <Integer> <DELIMITER> <TEXT>
<DOC_EL_TYPE> ::= <FIG_TYPE> | <TABLE_TYPE> | <ALGO_TYPE>
<FIG_TYPE> ::= FIGURE|Figure|FIG.|Fig.
<TABLE_TYPE> ::= TABLE|Table
<ALGO_TYPE> ::= Algorithm|algorithm|Algo.|algo.
<DELIMITER> ::= : | .
<TEXT> ::= <A String of Characters>

TABLE II. A GRAMMAR FOR DOCUMENT-ELEMENT CAPTIONS

Most scientific documents use pseudo-codes for compact
and concise illustrations of algorithms. Pseudo-codes are nor-
mally treated as document elements separate from the running
text, and usually are accompanied with identifiers such as cap-
tions, function names, and/or algorithm names. Since pseudo-
codes can appear anywhere in a document, these identifiers
usually serve the purpose of being anchors which can be
referred to by context in the running text. Here we present three
algorithms for detecting pseudo-codes in scholarly documents:
a rule based method (PC-RB), a machine learning based
method (PC-ML), and a combined method (PC-CB).

A. Rule Based Method (PC-RB)

We earlier proposed a rule based pseudo-code detection al-
gorithm in [3], which utilizes a grammar for document-element
captions to detect the presence of pseudo-code captions (See
Table II). Here, we extend the previous approach by adding
the following rules to improve the coverage and reduce the
false positives:

• A pseudo-code caption must contain at least one
algorithm keyword, namely pseudo-code, algorithm,
and procedure.

• Captions in which the algorithm keywords appear after
prepositions (e.g. ‘Figure 15: The robust envelope
obtained by the proposed algorithm’) are excluded,
as these are not likely captions of pseudo-codes.

Hence, given a document, the PC-RB method outputs a set of
line numbers, each of which represents a pseudo-code caption.

B. Machine Learning Based Method (PC-ML)

The PC-RB method yields high precision, however it
still suffers from low coverage resulting in poor recall. We
found that 25.8% of pseudo-codes in our dataset DS2 do not
have accompanied captions. These pseudo-codes would remain
undetected by the PC-RB method. To correct this, we propose
a machine learning based (PC-ML) method to directly detect
the presence of pseudo-code content (instead of their captions).
This originates from the observation that most pseudo-codes
are written in a sparse manner, resulting in sparse regions in
documents. We call such sparse regions sparse boxes. The PC-
ML method first detects and extracts these sparse boxes, then
classifies each box whether it is a pseudo-code or not. The
following subsections explain the sparse box identification, the
feature sets, and the classification algorithms used. Given a

Fig. 3. Example of sparse regions (sparse boxes)

document, the PC-ML method outputs are a set of tuples of
⟨start, end⟩ line numbers, each of which represents the start
and end lines of a pseudo-code.

1) Sparse Box Extraction: We define a sparse box as a
set of at least N consecutive sparse lines. Figure 3 shows an
example of sparse boxes. A sparse line is a line whose ratio
of the number of non-space characters to the average number
of characters per line is less than threshold M. We found that
N = 4 and M = 0.8 work best for our dataset. We evaluate our
sparse box extraction method in two perspectives: coverage
and accuracy. Given a set of sparse boxes B extracted from a
document d, the coverage is defined as following:

Coverage =
|{l|l ∈ b, b ∈ B, l is positive}|

|{l|l ∈ b, b ∈ B}|

The coverage utilizes line-wise recall to quantifiy how much
pseudo-code content can be captured within the extracted
sparse boxes. Our sparse box extraction method yields a
coverage of 92.99%. Among all the sparse boxes detected in
our dataset, we found 237 (out of 275 (86.18%) actual pseudo
codes) pseudo-code boxes.

The accuracy is measured using the delta evaluation for the
pseudo-code boxes. For each pseudo-code box, we measure
both the upper boundary delta (the start line number of the
actual pseudo-code minus the start line number of the sparse
box) and lower boundary delta (the end line number of the
actual pseudo-code minus the end line number of the sparse
box). Figure 4 and 5 show the upper and lower boundary delta
distributions of the 237 pseudo-code boxes.

2) Feature Sets: We extract 47 features from each of the
sparse boxes, listed in Figure 6. These features are classified
into 4 groups: font-style based (FS), context based (CX),
content based (CN), and structure based (ST). The FS features

Fig. 4. Distribution of upper boundary deltas of pseudo-code boxes

Fig. 5. Distribution of lower boundary deltas of pseudo-code boxes

Grp Feature Descrip on
INDENTATION VARIANCE Variance of the pos i!ons of the first character in each l ine

FIRST 4CHARS INDENTATION VARIANCE Variance of the average of the pos i!ons of the first 4

NUM DIFF FONTSTYLES # of different font s tyles . Ex. 'XX XX ' has 2 font s tyles .

NUM FONTSTYLE CHANGES # of character pa i rs whose font s tyles are different. Ex. 'XXXX'

has 3 font s tyle changes .

FRACTION NUM FONTSTYLE CHANGES Frac!on of number of font s tyle changes to number of l ines .

HAS CAPTION NEARBY Whether there i s a cap!on near (within 3 upper/lower l ines)

HAS PC CAPTION NEARBY Whether there i s a pseudo-code cap!on near the sparse box.

HAS PC NAME NEARBY Whether there i s an a lgori thm name (e.g. `Algorithm ABC ')

near the sparse box.
NUM PC WORDS Number of pseudo-code keywords (e.g. forall , for, if, else,

iffalse, i"rue, endif, etc.)

FRACTION PC WORDS TO NUMWORDS Frac!on of pseudo-code keywords to number of words .

FRACTION PC WORDS TO NUMLINES Frac!on of pseudo-code keywords to number of l ines .

NUM ALGO WORDS # of a lgori thm keywords (e.g. a lgori thm, pseudo-code,etc.)

FRAC ALGO WORDS TO NUMWORDS Frac!on of # of a lgori thm keywords to # of words

FRAC NUM ALGO WORDS TO NUMLINES Frac!on of # of a lgori thm keywords to # of l ines

NUM LINES BEGIN WITH PC WORDS # of l ines beginning with a pseudo-code keyword

FRAC NLINES BEG. W/ PCWORDS TO NLINES Frac!on of # of l ines beginning with a pseudo-code word to #

NUM FUNCTIONS # of func!ons . Ex. Scan(f, x)

FRACTION NUM FUNCTIONS TO NUMLINES Frac!on of # of func!ons to # of l ines

NUM CHARS # of characters

FRACTION NUM CHARS TO NUMLINES Frac!on of # of characters to # of l ines

NUM SYMBOLS # of symbols

FRACTION NUM SYMBOLS TO NUMCHARS Frac!on of # of symbols to # of characters

NUM ALPHABETS # of a lphabets

FRACTION NUM ALPHABETS TO NUMCHARS Frac!on of # of a lphabets to # of characters

NUM DIGITS # of digi ts

FRACTION NUM DIGITS TO NUMCHARS Frac!on of # of digi ts to # of characters

NUM ALPHANUMERS # of a lphanumeric characters

FRAC NUM ALPHANUMBERS TO NUMCHARS Frac!on of # of a lphanumeric characters to # of characters

NUM NON-ALPHANUMBERS # of non-a lphanumeric characters

FRAC NON-ALPHANUMBERS TO NUMCHARS Frac!on of # of non-a lphanumeric characters to # of characters

NUM GREEKCHARS # of Greek characters

FRAC NUM GREEKCHARS TO NUMCHARS Frac!on of # of Greek characters to # of characters

NUM ARROWS # of arrow symbols

FRACTION NUM ARROWS TO NUMCHARS Frac!on of # of arrow characters to # of a l l characters

NUM MATHOPS # of math operators (e.g. +,-,∑,⋅,∏, etc.)

FRACTION NUM MATHOPS TO NUMCHARS Frac!on of # of math operators to # of characters

NUM 1-CHAR WORDS # of 1-character words (e.g. `x xx x' has 2 1-character words)

FRAC NUM 1-CHAR WORDS TO NUMLINES Frac!on of # of s ingle-char words to # of l ines

FRAC NUM 1-CHAR LINES TO NUMLINES Frac!on of # of 1-character l ines to # of a l l l ines

NUM IJK # of characters `i ', 'j', and `k'

FRACTION NUM IJK TO NUMLINES Frac!on of # of `i ', 'j', `k' characters to # of l ines

NUM CODING SYMBOLS # of coding symbols (e.g. \{,\},[,],@,/)

FRAC NUM CODING SYMBOLS TO NUMLINES Frac!on of # of coding symbols to # of l ines

NUM LINES END WITH DOT Number of l ines ending with `.'

FRAC NUMLINES END W/ DOT TO NUMLINES Frac!on of # of l ines ending with `.' to # of l ines

NUM LINES BEGIN WITH NUMBER # of l ines beginning with a number

FRAC LINES BEG. W/ NUMBER TO NUMLINES Frac!on of # of l ines beginning with anumber to # of l ines

FS

CN

CX

ST

Fig. 6. Features set for pseudo-code box classification can be divided into
4 groups-font style based (FS), context based (CX), content based (CN), and
structure based (ST)

capture the various font styles used in pseudo-codes. The CX
features detect the presence of pseudo-code captions. The CN

features capture the pseudo-code specific keywords and coding
styles. The ST features characterize the sparsity of pseudo-
codes and the symbols used.

3) Classification Models: Each detected sparse box is clas-
sified whether it is a pseudo-code box or not. We try 12 base
classification algorithms using the features described in Figure
6, namely, Logistic Model Trees (LMT), Multinomial Logistic
Regression (MLR), Repeated Incremental Pruning to Produce
Error Reduction (RIPPER), Linear Logistic Regression (LLR),
Support Vector Machine (SVM), Random Forest (RF), C4.5
decision tree, REPTree, Decision Table (DT), Random Tree
(RT), Naive Bayes (NB), and Decision Stump (DS).

In addition to the base classifiers listed above, we also
try ensemble methods such as uniform weighted majority
voting and probability averaging methods among these base
classifiers. First, the 12 base classifiers are tested and ranked
by their precision, recall, and F1 scores. Then, the first 2, 3, ...,
12 ranked classifiers in each ranked list are used for majority
voting and probability averaging methods. Note that we also
try other ensemble methods such as Adaboost, Bagging, and
Rotation Forest but overall the majority voting and probability
averaging methods perform much better.

C. Combine Method (PC-CB)

Though the PC-ML method can capture the pseudo-codes
which do not have accompanied captions, some pseudo-codes
which are not first captured in one of the sparse boxes would
still remain undetected. Mostly, such pseudo-codes are either
written in a descriptive manner (hence do not result in sparse
regions in the document), or figures (the text extractor cannot
extract images). In our dataset DS2, 35 pseudo-codes (out of
275 actual pseudo-codes) cannot be captured using the sparse
box extraction. However, these undetected pseudo-codes may
have accompanied captions and hence might still be detected
using the PC-RB method. We propose a combine method (PC-
CB) of the PC-RB and the PC-ML using a simple heuristic as
follows:
STEP1 For a given document, run both PC-RB and PC-ML.
STEP2 For each pseudo-code box detected by PC-ML, check
whether there is a pseudo-code caption detected by PC-RB
nearby. If there is, the pseudo-code box and the caption are
combined.

V. EVALUATION AND DISCUSSIONS

We evaluate the three pseudo-code detection algorithms on
dataset DS2, using 10-fold document-wise cross validation.
This way we can make sure that both the test and train sets
do not contain instances from the same documents.

A. Evaluation Metrics
Standard precision, recall, and F1 are used for evaluating

the performance. Let Tg be the set of all pseudo-codes, Tr
be the set of detected pseudo-codes, so that the correctly
detected pseudo-codes are Tg

∩
Tr. These metrics are defined

as follows:

precision =
|Tg

∩
Tr|

|Tr|
, recall =

|Tg

∩
Tr|

|Tg|
, F1 =

2 · precision · recall
precision + recall

Method Model Pr% Re% F1%
PC-RB RuleBased 87.12 44.57 58.97
PC-ML MLR† 80.35 56.78 66.54
PC-ML !LMT-RF-RIPPER-MLR 85.31 57.04 68.37
PC-ML +NB-RIPPER-LMT-MLR 79.61 59.37 68.02
PC-ML !NB-RIPPER-LMT-MLR 78.26 60.05 67.96
PC-ML !LMT-RF-RIPPER 88.84 53.74 66.97
PC-CB LMT‡ 79.64 67.89 73.30
PC-CB !LMT-RF-RIPPER§ 87.37 67.17 75.95
PC-CB +LMT-RF-RIPPER 83.49 67.92 74.90
PC-CB !NB-RIPPER-LMT-MLR 78.28 70.72 74.31
PC-CB NB 37.86 75.89 50.52
TABLE III. PRECISION, RECALL, AND F1 OF THE PSEUDO-CODE

DETECTION METHODS USING DIFFERENT CLASSIFICATION MODELS. (‘!’
DENOTES MAJORITY VOTING, ‘+’ DENOTES PROBABILITY AVERAGING)

Fig. 7. Comparison of the ensemble methods against the best base classifiers
in PC-ML and PC-CB

B. Results

Table III lists notable results. As expected, the rule-based
method (PC-RB) yields high precision with a cost of low recall.
Using machine learning techniques (PC-ML), the overall per-
formances (in terms of F1) are improved. The combine method
(PC-CB) of PC-RB and a majority voting of LMT, Random
Forest, and RIPPER classification models§ performs the best in
terms of F1, improving the performance over the state-of-the-
art (the rule based method) by 16.98% (The recall is improved
by 22.6%, while the precisions are on par.).

C. Impact of Ensemble Methods

It is worth noting that the ensemble methods result in a
greater improvement compared to only using base classifiers.
Figure 7 compares the performances (in terms of F1) between
the ensemble methods and the best base classifiers for PC-
ML (MLR†) and PC-CB (LMT‡). The X-axis denotes the first
k base classifiers, ranked by their F1 scores, used in each
ensemble method. We conclude that the ensemble methods
are useful for these specific problems, when the best base
classifiers are combined. However, the performance of the
ensemble methods can decrease as the number of classifiers
grows. This might be because bad classifiers can impede
the collective decision of the good ones. Unlike traditional
document classification techniques wherein feature space can
grow large as the number of documents increases (to handle the
pattern and lexical diversity, etc.), all of our proposed methods
scale well with document growth as the feature size is fixed.

VI. CONCLUSIONS

We have presented three methods for detecting pseudo-
codes in scholarly documents: rule based (PC-RB), machine
learning based (PC-ML), and combine (PC-CB) methods. Our
PC-RB method extends the state-of-the-art approach. The PC-
ML method employs machine learning techniques to extract
sparse boxes from a document and classifies each of them
whether it is a pseudo-code using a novel set of 47 features.
The PC-CB capture the benefits of the both former methods.
The best performance in terms of F1 is achieved by the PC-CB
method with the combination of the rule-based method and the
majority vote of LMT, RF, and RIPPER classifiers. Moreover,
we present an analysis of the performance increase using the
ensemble methods. Future work could investigate scalability
for large datasets such as the over 2 million documents
in CiteseerX repository, and to employ the co-training [18]
technique to expand the training data with unlabeled data.

REFERENCES

[1] J. Wang, “Mean-Variance Analysis: A New Document Ranking Theory
in Information Retrieval,” Proceedings of the European Conference on
Information Retrieval ECIR, pp. 4–16, 2009.

[2] D. S. Hirschberg, “A linear space algorithm for computing maximal
common subsequences,” Communications of the ACM, pp. 341–343,
1975.

[3] S. Bhatia, S. Tuarob, P. Mitra, and C. L. Giles, “An algorithm search
engine for software developers,” ser. SUITE ’11, 2011, pp. 13–16.

[4] J. M. Kleinberg and E. Tardos, Algorithm Design. Addison Wesley,
2005.

[5] S. Bhatia, P. Mitra, and C. L. Giles, “Finding algorithms in scientific
articles,” in Proceedings of the 19th international conference on World
wide web, ser. WWW ’10, 2010, pp. 1061–1062.

[6] J. B. Baker, A. P. Sexton, V. Sorge, and M. Suzuki, “Comparing
approaches to mathematical document analysis from pdf,” ser. ICDAR
’11, 2011, pp. 463–467.

[7] K.-F. Chan and D.-Y. Yeung, “Mathematical expression recognition: a
survey,” International Journal on Document Analysis and Recognition,
vol. 3, no. 1, pp. 3–15, 2000.

[8] R. Zanibbi and D. Blostein, “Recognition and retrieval of mathematical
expressions,” International Journal on Document Analysis and Recog-
nition, pp. 1–27, 2012.

[9] H. Twaakyondo and M. Okamoto, “Structure analysis and recognition
of mathematical expressions,” ser. ICDAR ’95, 1995, pp. 430 –437.

[10] J. Ha, R. M. Haralick, and I. T. Phillips, “Understanding mathematical
expressions from document images,” ser. ICDAR ’95, 1995, pp. 956–.

[11] S. Mandal, S. P. Chowdhury, A. K. Das, and B. Chanda, “Automated
detection and segmentation of table of contents page from document
images,” ser. ICDAR ’03, 2003, pp. 398–.

[12] J.-Y. Ramel, M. Crucianu, N. Vincent, and C. Faure, “Detection,
extraction and representation of tables,” ser. ICDAR ’03, pp. 374–378.

[13] Y. Liu, K. Bai, P. Mitra, and C. L. Giles, “Improving the table boundary
detection in pdfs by fixing the sequence error of the sparse lines,” ser.
ICDAR ’09, 2009, pp. 1006–1010.

[14] Y. Liu, K. Bai, P. Mitra, and C. Giles, “Searching for tables in digital
documents,” ser. ICDAR ’07, 2007, pp. 934–938.

[15] X. Lu, J. Wang, P. Mitra, and C. L. Giles, “Automatic extraction of data
from 2-d plots in documents,” ser. ICDAR ’07, 2007, pp. 188–192.

[16] S. Kataria, W. Browuer, P. Mitra, and C. L. Giles, “Automatic extraction
of data points and text blocks from 2-dimensional plots in digital
documents,” ser. AAAI’08, 2008, pp. 1169–1174.

[17] M. A. Hearst, A. Divoli, H. Guturu, A. Ksikes, P. Nakov, M. A.
Wooldridge, and J. Ye, “BioText Search Engine: beyond abstract
search,” Bioinformatics, vol. 23, no. 16, pp. 2196–2197, 2007.

[18] A. Blum and T. Mitchell, “Combining labeled and unlabeled data with
co-training,” ser. COLT’ 98, 1998, pp. 92–100.

