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ABSTRACT

Knowledge Graphs capture the semantic relations between real-

world entities and can thus, allow end-users to explore di�erent

aspects of an entity of interest by traversing through the edges in

the graph. Most of the state-of-the-art methods in entity recom-

mendation are limited in the sense that they allow users to search

only in the immediate neighborhood of the entity of interest. This

is majorly due to e�ciency reasons as the search space increases

exponentially as we move further away from the entity of interest

in the graph. Often, users perform the search task in the context

of an information need and we investigate the role this context can

play in overcoming the scalability issue and improving knowledge

graph exploration. Intuitively, only a small subset of entities in the

graph are relevant to a users’ interest. We show how can we e�-

ciently select this sub-set by utilizing contextual clues and using

graph-theoretic measures to further re-rank this set to o�er highly

relevant graph exploration capabilities to end-users.
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1 INTRODUCTION

A large fraction of web search queries are entity-centric and con-

tain at least one named entity mention such as names of places,

persons, movies, etc. (estimates vary from 40% [27] to 60% [36]).
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Further, users are often interested in knowing and exploring about

a topic of interest rather than obtaining instant answers [12]. To

achieve this goal, they perform more exploratory and investiga-

tive searches [29] that are often open-ended and gain a better un-

derstanding of the topic while interacting with the system [48]. In

addition to web search, such entity-oriented exploration tasks are

also common in enterprise and domain speci�c settings [10] such

as �nding entities related to an entity of interest [9], exploring re-

lations between drugs and genes [19], or studying connections be-

tween di�erent criminals and terrorists [42]. In such exploratory

tasks, context plays a key role in determining the information to be

presented to the user. For example, a user interested in knowing

more about Elon Musk in context of Tesla Motors will be interested

in a di�erent set of entities than a user who is more interested in

SpaceX, the space exploration company.

Most of the existing work on such entity-oriented search and ex-

ploration (covered in detail in Section 2) have studied entity search

or recommendation in context of Web Search [11, 12] where the

features derived from query logs and session statistics are used

to recommend entities related to the input entity speci�ed by the

user; or in ad-hoc entity retrieval setting where the focus is on re-

trieving entities embedded in documents [7, 13, 17, 18]. Such meth-

ods rely solely on the textual information present in documents

containing entity mentions where the information present is of-

ten ambiguous and unstructured and thus, it is harder to utilize

the interactions between related entities present in di�erent docu-

ments [30].

Recent advancements in semantic search technology have made

structured knowledge bases such as DBPedia [5], Yago [44], etc. a

critical component of modern information management systems.

Many large scale knowledge graphs are often constructed automat-

ically using machine-learned information extraction techniques [4,

15] and can thus also be used in domain speci�c applications such

as �nance [40], healthcare [34], cybersecurity [21]. In such knowl-

edge graphs, nodes represent real world concepts or entities and

their relationships with other such entities are represented as edges

in the graph. This structured representation about real world con-

cepts (entities) can help overcome the shortcomings of text-based

methods for entity-oriented tasks. For example, in context of rec-

ommender systems, variants of personalized page ranks over user

and item graphs have been shown to capture indirect relationships

in the graph and thus, improving recommendation accuracy [24,

50]. However, one major shortcoming of such graph-based meth-

ods is scalability [30] as the number of entities to evaluate increases

exponentiallywith the distance from the seed entity. Consequently,

for typical knowledge graphs that containmillions of entities, most

graph based methods only work in the immediate neighborhood of
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the input entity or at most up to one hop neighborhood [2, 3, 6, 25]

ignoring the useful information present in the rest of the graph.

We posit that the context in which the user performs a search or

exploration task can be utilized to overcome the shortcomings of

existing graph based methods in terms of scalability. Speci�cally,

we argue that the contextual information can be employed to in-

crease the search space over the whole graph, instead of just the

direct neighborhood of the input entity. If we can �lter the enti-

ties of the graph by their relevance to the context, graph struc-

ture based approaches can then be e�ciently used to re-rank this

much smaller, yet highly relevant sub-set of the graph. To test

this hypothesis, we focus on the problem of entity-oriented search

over knowledge graphs where the user is interested in �nding en-

tities relevant to an input entity in context of an information need.

For example, a user researching about the Turkish Warrior Timur

might be interested in knowing entities (places, people, etc.) rele-

vant to Timur’s conquest of Persia. Thus, the user speci�es Timur

as the input entity, and Timur’s conquest of Persia as the context

and the system returns a list of relevant entities to the user.

We describe a probabilistic formulation that takes into account

the contextual information of the entities and then combines it

with graph structural features to produce a �nal list of entities

ranked by their relevance to the input entity (Section 3). Experi-

ments conducted using a knowledge graph created out ofWikipedia

articles and queries selected from theWikistream dataset (Section 4)

showed that incorporating contextual information does help – we

are able to �nd lot more relevant entities beyond the direct neigh-

borhood of the input entity. Further, a combination of graph-based

features and contextual information also helps in pushing more rel-

evant entities to the top of result list.

2 RELATED WORK

2.1 Entity Relatedness and Finding Related
Entities

Wikipedia, with its rich semantic data and extensive hyperlink struc-

ture, has been extensively used for measuring relatedness between

two entities (or concepts). Just as theGoogle Similarity Distance [16]

is de�ned over Google’s web graph, Milne andWitten[31] described

a measure for computing entity relatedness by utilizing the hyper-

link structure in Wikipedia articles [31] and used it for predicting

missing links in Wikipedia [32]. Strube and Ponzetto [43] utilized

the category hierarchy as provided byWikipedia to compute relat-

edness between two entities.

Text Retrieval Evaluation Conference (TREC) introduced a re-

lated entity �nding (REF) track [7] with an objective to develop

benchmark collections and evaluation measures for entity-oriented

search tasks. Given an input query and a description of users’ search

intents, the systemswere required to produce a ranked list of home-

pages representing target entities. The REF track, thus, did not take

into account the structured relationships between entities and fo-

cused only on the content present in entity homepages. In con-

text of TREC REF task, Bron et al. [13, 14] describe the use of co-

occurrence statistics for ranking related entities. Fang and Luo [18]

describe a probabilistic model for ranking related entities that uti-

lizes Wordnet concepts for estimating the type information of tar-

get entities. Raghavan et al. [37] use the context around entity

mentions to build entity langugae models and use these models to

perform related entity �nding task. These methods, however, rely

mostly on the textual information present in entity homepages and

thus, do not utilize the semantic information otherwise present in

a knowledge graph.

2.2 Entity Recommendation in Web Search and
Other Information Retrieval Systems:

Blanco et al. [12] study the problem of entity recommendations in

Web search. Given an input entity, they used a learning to rank

approach to rank entities using co-occurrence based features de-

rived from search query logs, tags in �ickr and twitter, in addition

to graph theoretic features derived from the graph created out of

hyperlinks in web pages. Bin et al. [11] incorporate the click data

for entity panes shown to users in their entity recommendation

system for web search users. Reinanda et al. [39] identify and ex-

tract di�erent aspects of an entity from query logs and use these

aspects to improve query recommendations to search users.

As examples of domain-speci�c applications of utilizing knowl-

edge graphs, Fokoue et al. [19, 20] proposed a framework to predict

drug-drug interactions through similarity based link prediction.

In context of semantic knowledge bases, Wang et al. [47] and

Zhang et al. [51] proposed time aware entity recommendationmeth-

ods that are developed on the intuition that relationship between

entities evolve over time (e.g. married relationship between two

persons is valid only for a speci�c period in time). Tran et al. [45]

improve upon such models by recommending topic and time sen-

sitive results. However, like other link prediction and recommen-

dation methods, they also limited their models to direct neighbors

of the input entity whereas the focus of present work is to study

how context can be utilized to e�ciently increase the search space

to include entities that may not be directly connected.

3 PROPOSED APPROACH

We �rst describe the problem setting and present a mathematical

formulation of the contextual entity recommendation problem.We

then describe our proposed probabilistic framework and describe

di�erent components of the framework in detail.

3.1 Problem Formulation

Let G = {E,R} be a knowledge graph with E = {e1, e2, . . . , en} as

the set of entities (nodes) and R = {r1, r2, . . . , rm} as the set of re-

lationships (edge set). Let D be the underlying document corpus.

For each edge r ∈ R , Pr = {pr 1,pr 2, . . . ,prk }, is the set of pas-

sages in D that contain mentions of relationship r . This passage

set is generally available for automatically constructed knowledge

bases [10, 15] as these methods output the portions of text from

which a speci�c relationship is identi�ed. Even in manually cu-

rated knowledge graphs, these passages can be identi�ed by using

entity-linking techniques [33].

Next, consider a user who wants to explore this graph. The user

speci�es a starting query entity eq and the text context C , and

would like to see entities from the graph relevant to entity eq in

context, C . For example, the user may be interested in knowing

entities relevant to Steve Jobs in context of pixar animation.

In such a case, an entity like Steve Wozniak is not relevant for
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the user even though it is a very important entity for Steve Jobs,

whereas, Edwin Catmull, a Pixar executive is highly relevant, even

though Steve Jobs and Edwin Catmull are weakly connected in

the graph.

Mathematically, having observed the input entity eq and con-

textC , we are interested in computing the probability of observing

a target entity e , i.e, P (e |eq ,C).

Application of Bayes’ Theorem yields

P (e |eq ,C) ∝ P (e)P (eq ,C |e) (1)

Here, the denominator P (eq ,C) can be ignored as it is constant

for all target entities and will not alter the relative ranking of target

entities. Assuming eq andC to be independent, the above equation

can be written as follows.

P (e |eq ,C) ∝ P (e)
︸︷︷︸

entity prior

× P (eq |e)
︸ ︷︷ ︸

entity a�nity

× P (C |e)
︸︷︷︸

context relevance

(2)

Note that the above formulation clearly separates the probabil-

ity computation into three components – prior probability of tar-

get entity, a�nity between target and query entity and relevance

of target entity in context C . While the prior and entity a�nity

components can be computed using structural properties of the

graph, context relevance can be computed using the underlying

document corpusD. We discuss in detail the choices for the di�er-

ent components of the model in the following sub-sections.

3.2 Entity Prior

This component measures the prior probability of observing the

entity e and is independent of the input query eq and context C .

Intuitively, in absence of any input information, an entity that has

connections with many other entities in the graph has a higher

probability of being observed than an isolated entity. Therefore, we

de�ne the entity-prior in terms of degree of each entity as follows:

P (e) =
d(e)

2|R |
(3)

Here d(e) denotes the degree (in-degree + out-degree) of e and

R is the number of edges in the knowledge graph. Note that this is

a valid probability distribution and sums to 1 when summed over

all the entities, since Σed(e) = 2|R |. This prior assigns high score

to entities that are connected to a large number of other entities

and also helps in reducing the scores of noisy or erroneous entities

(present in the graph as a result of imperfect automatic knowledge

extraction methods) that typically have very few connections.

3.3 Entity A�nity

Entity a�nity captures the likelihood of association between two

given entities and is a measure of semantic relatedness between

them. We can exploit the knowledge graph to compute the a�ni-

ties and capture the rich structural information available in the

graph.

We assume P (eq |e) is same as P (e |eq ). This allows us to model

entity-affinity as a measure of similarity. While the related-

ness between two entities in the graph can be captured using mul-

tiple ways, we study following three widely studied relatedness

measures.

Adamic-Adar (AA): It was originally proposed to predict whether

one person is likely to be associated with another in an academic

social network constructed from web-pages [2]. Empirically, this

measure has been shown to perform better than many other com-

mon neighbors based similarity metrics such as common neigh-

bors count, Jaccard and cosine similarities for link-prediction in

social networks [26]. It is based on the intuition that if two persons

are similar then they will share many common “friends" between

them. Moreover, a person who is connected to a few is weighted

more than the person connected to many, since connections with

such less popular nodes are more informative and discriminative.

In terms of a graph, two nodes are highly similar if they have many

common neighbors which are not connected to a large number

of other nodes. For example, the fact that both Steve Jobs and

Bill gates share United States as a common neighbor is not

very informative and should not contribute heavily in determining

their relatedness as there are many other entities in the graph that

have connections with United States. Hence, it is important to

assign low weights to popular nodes, which is a major shortcom-

ing of some of the other neighborhood based measures like cosine

similarity and Jaccard similarity. Formally Adamic-Adar similarity

AA(u,v) between two nodes u,v ∈ E is de�ned as following:

AA(u,v) =
∑

x ∈N (u )∩N (v )

1

log(|N (x)|)
(4)

Here N (w) denotes the set of nodes to which there are outgoing

edges from w in the knowledge graph G. Note that it is compu-

tationally inexpensive hence can be used with very large graphs

easily.

Milne-Wi�en (MW): It was introduced to compute semantic re-

latedness between Wikipedia articles using only the hyper-link

structure (graph) between the articles [32]. The basic intuition be-

hind this measure is that two Wikipedia articles are topically re-

lated if there are manyWikipedia articles that link to both of them.

It has been successfully applied to a variety of tasks related to

Wikipedia data such as for measuring semantic associativity be-

tween Wikipedia concepts for entity disambiguation [38] and en-

tity linking tasks [41].

Formally Milne-Witten similarityMW (u,v) between two nodes

u,v ∈ E is de�ned as following:

MW (u,v) =
log

(

max(|N ′(u)|, |N ′(v)|)
)

− log
(

|N ′(u) ∩ N ′(v)|
)

log
(

|E|
)

− log
(

min(|N ′(u)|, |N ′(v)|)
)

(5)

Here N ′(w) denotes the set of nodes having outgoing edges tow .

Note that just like Adamic-Adar and other neighborhood based

methods, this measure also relies only on the neighborhood infor-

mation of input entities and is therefore, easy to compute even on

large graphs. However, this limitation prevents use of these mea-

sures for computing relatedness of entities that share no common
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neighbors. Consequently, the search space for thesemethods is lim-

ited to the second-hop neighbors of the query entity, however in

practice there could be many relevant entities that lie beyond the

second hop neighborhood. Further, since these methods utilize in-

formation only about the common neighbors and ignore longer

path between entities, these methods are limited in capturing com-

plete structural similarity induced by the graph.

SimRank: To overcome the limitations discussed above, we used

the SimRank algorithm proposed by Jeh and Widom [22] that is

based on the intuition that “two nodes are related if they are related

to similar nodes". Note that this recursive de�nition of SimRank al-

lows us to capture arbitrarily long paths and compute structural

similarities between entities that are farther away in the graph. In

contrast to the neighborhood based similarity scores it can mea-

sure similarities among nodes that don’t share any common neigh-

bors. Thus, it allows us to look beyond �rst and second hop neigh-

bors of a given node and has been empirically applied to a variety

of tasks such as predicting links in social networks [26].

Formally, SimRank SR(u,v) for any two vertices u,v ∈ E is de-

�ned as following.

SRγ (u,v) =

{

1, if u = v

γ ·

∑

x∈N ′(u )
∑

y∈N ′ (v ) SRγ (x,y)

|N ′(u ) |. |N ′(v ) |
, otherwise

(6)

Here, γ ∈ (0, 1) is a constant called decay factor, which assigns a

lower weight to far-away nodes in the graph. Typically γ = 0.8 has

been used in literature. The above equation de�nes SimRank in a

recursive fashion such that the SimRank between two nodes u and

v is computed as a function of pair-wise SimRank score computed

between their neighbors. The base case, as represented by the �rst

part of above equation, denotes that an entity is maximally similar

to itself.

SimRank Computation: As is evident from Equation 6, recur-

sive computation of SimRank is computationally ine�cient and it

is infeasible to compute it for large graphs. As a result, fast and scal-

able approximation algorithms have been proposed in literature

for e�cient SimRank computation.We used one such recently pro-

posed single pair SimRank algorithm [23] based on random walks

and monte carlo simulations for our implementation. Its time com-

plexity isO(TR), where R is the number of randomwalks simulated

and T is the maximum steps up to which the walks are performed.

Normalization to Probabilities: The above graph based a�n-

ity scores are not valid probabilities hence we have to normalize

them appropriately. Let S(x,y) be a similarity measure between

nodes x and y. Then a normalized version is as follows:

P (x |y) =
1 + S(x,y)

∑

z∈E

S(z,y) + |E|
(7)

Note here that the denominator requires us to compute the sim-

ilarity function over all pairs of entities x and y which may not

always be feasible due to the size of the graph. However, we also

note that the denominator remains same for all the entities in the

graph, and here can be ignored as we are only interested in relative

ranking of the entities.

3.4 Context Relevance

This component measures the relevance of the target entity to the

context in which the search/exploration task is being performed.

As discussed previously, this is a crucial component of our pro-

posed framework as it can help us in identifying a shortlist of con-

textually relevant entities that can then be re-ranked to produce

the �nal result list. In our problem setting, the context is repre-

sented as a set of terms input by the user (Section 3). Assuming

that the context terms are observed independently of each other,

the component P (C |e) can be estimated as follows:

P (C |e) =
∏

c ∈C

P (c |e) (8)

Here, c ∈ C are the constituent terms of context C .

In order to compute the probability of the term c given the en-

tity e , we built a context document for each entity in the graph by

utilizing the relationship passage sets described in Section 3. Intu-

itively, the probability of observing a context term given an entity

is higher if that term appears frequently withmentions of the input

entity in the underlying corpus. If Re = {re1, re2, . . . , ren} be the

set of relationships in which entity e is involved, and Prei is the set

of passages from which rei was extracted, the context document

for entity e is de�ned as follows:

CD(e) =
⋃

rei ∈Re

Prei (9)

Thus, a context document for an entity is the concatenation of

all the passages from the text corpus from which a relation involv-

ing the entity was extracted. Once the context document of the

entity is build, the probability of observing a term given the entity

can be estimated using a unigram language model for the context

document [28, Chapter 12] as follows:

P (c |e) = P (c |CD(e)) =
t f (c) + 1

|CD(e)|+|V |
(10)

Here, t f c is the term frequency of term c in the context document

and |V | is the total number of terms in the vocabulary. Note that

the factor of one in numerator is added for smoothing purposes

to prevent zero probabilities for terms not present in the context

document [28, Chapter 12].

As an example, consider the entity Steve jobs that hasmany re-

lationships with di�erent Apple products (iPhone, iPod, iPad,

Macintosh, etc.). Words occurring in passages from which these

relationships are extracted are representative of di�erent contexts

in which Steve jobs appears (such as design, development, in-

vention, functioning, etc.). Likewise, Steve Jobs has many rela-

tionships with di�erent executives like Tim Cook, Eddie Cue,

Jonathan Ive, etc. and words occurring in relationship passages

with these entities will be di�erent than those occurring with Ap-

ple products. Thus, the context document for Steve Jobs will

capture di�erent terms representative of di�erent contexts relevant

to Steve Jobs. Also note that these words do not correspond to

named entities and hence, are not present in the graph but will be

captured in the context document for Steve Jobs.
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Method Score Function

Context (C) logP (C |e)

Degree (D) logP (e)

D+Adamic-Adar(AA) logP (e) + log(1 +AA(eq , e))

D+Milne-

Witten(MW)

logP (e) + log(1 +MW (eq , e))

D + SimRank (SR) logP (e) + log(1 + SR(eq , e))

D + C + AA logP (e) + log(1 +AA(eq, e)) + logP (C |e)

D + C + MW logP (e)+ log(1+MW (eq , e))+ log P (C |e)

D + C + SR logP (e) + log(1 + SR(eq , e)) + logP (C |e)

Table 1: Summary of methods with their corresponding

score functions for ranking.

3.5 Final Scoring Function and Variations:

Finally, we plug-in the above prior, entity-a�nity and context rel-

evance scores in Equation 2 and take log to arrive at the following

�nal ranking function:

score(e |eq ,C) = logP (e) + log(1 + S(eq |e)) + logP (C |e) (11)

This scoring function allows us to obtain di�erent variations

which are summarized in Table-1. There are three sections in the

table, �rst is just the context based method and it doesn’t use any

information from the knowledge graph and relies completely on

the results from the text corpus, the second section is of purely

graph based methods that use only the graph based scores to rank

the entities. The third group combines the above two, i.e. it com-

bines both the graph based features and context relevance. In the

next Section, we use these variations to study the impact of di�er-

ent components of the ranking function (Equation 11).

4 EXPERIMENTS

In this section we describe the data and query set we used for

evaluation. We provide details about the knowledge graph and en-

tity language model construction. We describe a new dataset for

this task that we constructed using the WikiStream dataset [49].

Implementation details of the scores mentioned in the Equation

11 are discussed. We show comparison of methods utilizing only

the context information, graph based scores, and combinations of

these using well known performance measures. We also study the

distribution of relevant entities at di�erent path lengths from the

query entity to understand the importance of entities at di�erent

distances.

4.1 Data Description

4.1.1 Text Corpus: We use dump of the English Wikipedia

as our background text corpusD as it is a snapshot of the general

open domain knowledge about the World. It has around 5 million

articles and is used to construct our knowledge graph and entity

context documents as described next.

Knowledge Graph:We use a semantic graph constructed from

the text of all articles in Wikipedia by automatically extracting the

entities and their relations by using Statistical Information and Re-

lation Extraction (SIRE) toolkit [15]. Even though there exist pop-

ular knowledge bases like DBPedia that contain high quality data,

we chose to construct a semantic graph using automated means

as such a graph will be closer to many practical real world scenar-

ios where high quality curated graphs are often not available and

one has to resort to automatic methods of constructing knowledge

bases. Our graph contains more than 30 millions entities and 192

million distinct relationships in comparison to 4.5 million entities

and 70 million relationships in DBpedia.

Entity Context Documents: We construct the context docu-

ments for all 30 million+ extracted entities in our knowledge graph

and indexed them using the Indri Language Modeling Toolkit as

provided by the Lemur project [1]. Indexing EntityContextDoc-

uments: To e�ciently search the documents relevant in a given

context we use Indri search engine of the Lemur project. Indri is

e�cient, scalable and gives highly accurate search results [46]. In

addition Indri also gives the likelihood score for each result it re-

turns, which we can use for context-relevance score. In the in-

dexing process we use a standard stopwords list as provided by the

Onix text retrieval toolkit1 and krovetz stemmer as implemented

in Indri.

4.2 Query Set

We create the query set by using the recently released WikiStream

dataset [49] following an approach similar to the one followed by

Tran et al. [45]. Entity mentions on a Wikipedia page are often

linked to their respective Wikipedia pages and users often click

on these linked Wikipedia pages to read more about these related

entities. Further, since the articles in Wikipedia are often catego-

rized into sub-topics, an entity link mentioned in a speci�c section

of the article and clicked frequently by the users can be consid-

ered a proxy for relevance of the clicked entity to the source en-

tity in context of the sub-topic/aspect. For example, “Pixar and

Disney” section on Steve Jobs’ Wikipedia article contains links

to Lucas�lm, Bob Iger, Michael Eisner, etc. – entities relevant to

Steve Jobs in context of Disney and Pixar, even though, they may

not be deemed relevant otherwise. The WikiStream dataset is cre-

ated by processing Wikipedia request logs for the month of Feb-

ruary 2015 and consists of < re f erer , resource > pairs where

resource is a Wikipedia article and a re f erer could be another

Wikipedia article, or some other external source (request coming

from search engines, other web pages, etc.). We extracted all the

click pairs from the click stream logs where the referrer and re-

source were Wikipedia entities and mapped the click pairs with

the title of the sub-section where the entity was mentioned giving

us < inputentity,context > pairs to use as query and an associated

list of clicked entities as our answer set. Hence we have a collec-

tion of tuples (query entity, context, relevant entities) and we ran-

domly select a subset of 50 such tuples and refer it by WikiContext

dataset in the following sections. Table 2 presents some example

queries from our dataset. The complete list of queries, context,

and relevant entities used in our experiments can be accessed at

http://sumitbhatia.net/source/datasets.html.

1http://www.lextek.com/manuals/onix/stopwords1.html

http://sumitbhatia.net/source/datasets.html
http://www.lextek.com/manuals/onix/stopwords1.html
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Input Entity Context Example Answer

Entities

Lee H. Oswald John F. Kennedy and J.

D. Tippit Shootings

James Tague, John

Connally, Texas

Theatre

Timur Campaign Against

The Tughlaq Dynasty

Delhi Sultanate,

Sultan Nasir-U Din

Mehmud

Martina Hingis Injuries and Hiatus

From Tennis

Williams Sisters,

Hopman Cup

Art Modell As Principal Owner of

Baltimore Ravens

1996-2004

Ted Marchibroda,

Brian Billick

Art Modell As Cleveland Browns

owner 1961–1995

Paul Brown,

Blanton Collie

Table 2: Example queries from the WikiContext dataset.

4.3 Scores Computation

4.3.1 Context Score: We search for relevant documents (enti-

ties) in the given contextC by usingC as input query to Indri. It re-

turns a list of documents most relevant to the given query but note

that in the corpus each indexed document corresponds to an entity.

As a result, we obtain a ranked list of contextually relevant entities.

Indri also provides log probability score for each output entry de-

noting its relevance to the query. We use this score as the Context

relevance score de�ned in equation 2. From the results returned

by Indri we select top-100 entities and compute the entity-a�nity

scores for these shortlisted entities.

4.3.2 Graph Scores: We compute graph scores between the

query entity (source entity) and the target entities (shortlisted based

on their relevance to context). Similarity measures like Adamic-

Adar, Milne-Witten etc. can be computed easily by simple neigh-

borhood queries. However SimRank computation requires back-

ward random walks starting from the source and target entities

each. Since it is a Monte Carlo based method, we have to take

many samples of the walk in order to get a good approximation.

We store the full graph in-memory so that random walks could be

simulated e�ciently. We use γ = 0.8, number of random walks

(samples) R = 200 and maximum distance T = 10 , for SimRank

computation between the source and target entities.

4.4 Evaluation Protocol

We �rst retrieve top-100 entities based on the context from the

entity docs indexed using Indri. This gives us candidate entities

relevant to the context and limits the search space as well. We

compute the degree score for these entities and the graph based

similarity scores between the target entity and the candidate enti-

ties. The candidate entities are re-ranked using di�erent combina-

tions of scores listed in Table- 1. We then evaluate the quality of

results by comparing against the automatically obtained ground

truth and relevance scores obtained from human evaluators. We

are interested in Top-5, Top-10 and Top-25 �nal entities obtained

after re-ranking the candidate set.

We reportMean Reciprocal Rank (MRR), NormalizedDiscounted

Cumulative Gain (NDCG), Precision and Recall @K to evaluate the

e�ectiveness of context and graph based entity retrieval compo-

nents. We �rst re-rank the top-100 candidate entities by di�erent

scores and then compute the measures by taking top-k results of

the re-ranked list. We report the average of each performance met-

ric over all the queries in the given query set.

4.5 Results and Discussions

We evaluate the quality of results obtained from di�erent methods

and also study the relevance of entities beyond neighborhood. We

evaluate results on this dataset against the automated ground truth

as well as the ground truth obtained from manual labeling for all

50 queries.

4.5.1 Automated Ground Truth:

Note that in the automatically extracted ground truth, graded rele-

vance judgments are not available. Hence we can’t computeNDCG

in this case and report Precision, Recall and MRR in Table-3. It can

be observed from the table that the combination (D+C+SR) out-

performs pure Context and pure graph based methods across all

metrics. Note that the pure graph based methods lack the context

relevance scores hence their performance is not as good as just the

context basedmethod as they produce a static ranking that remains

same for di�erent contexts. The context based method, while ca-

pable of �nding contextually relevant entities, su�ers from not uti-

lizing the similarity information induced by rich graph structure.

Augmenting the context based method with graph structural infor-

mation produces consistently better results providing support for

our hypothesis that incorporating contextual clues to graph based

similarity measures can help retrieve more relevant entities.

4.5.2 Manual Ground Truth:

In the automatically constructed ground truth created from the

WikiStream dataset, relevance judgments for all the entities are

not available for all the entities retrieved by di�erent methods.

Therefore, we obtained relevance labels for top 100 shortlisted en-

tities for each query from two human judges for better evaluation

and comparison of the results obtained by di�erent methods. The

judges were presented with the query entity, context and the Top-

100 shortlisted entities in randomorder andwere asked to assign la-

bels from {0 : irrelevant, 1 : relevant, 2 : highly relevant} for each

result entity. In case of disagreements, the �nal judgments were

aggregated by selecting the minimum value of the two judgments

for each result entity. Table-4 reports the numbers on these aggre-

gated relevance labels. Once again, similar observations to Table 3

can be made. We note that the method (D+C+SR) consistently out-

performs other methods – it not only �nds more relevant entities,

it is able to produce a better ranking as indicated by higher NDCG

values. Moreover, the gap in performance when compared to other

methods is also signi�cant.

4.5.3 Per�ery Performance Comparison

. Next, we study how the best performing method (D+C+SR) per-

forms against the second best method D+C+AA and just the Context

based method C. We take the di�erence between the performance

metrics ( ∆ Precision @10, ∆Recall @10, ∆NDCG @10) obtained

by D+C+SR and C, D+C+AA for all 50 queries in the dataset. We sort
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@5 @10 @25

P R MRR P R MRR P R MRR

Context (C) 0.116 0.116 0.212 0.104 0.208 0.241 0.062 0.312 0.251

Degree (D) 0.080 0.080 0.170 0.064 0.128 0.195 0.054 0.268 0.212

D + Adamic Adar(AA) 0.096 0.096 0.194 0.082 0.164 0.226 0.063 0.316 0.239

D + Milne Witten(MW) 0.080 0.080 0.169 0.060 0.120 0.189 0.051 0.256 0.208

D + SimRank (SR) 0.112 0.112 0.195 0.094 0.188 0.227 0.063 0.316 0.237

D + C + AA 0.100 0.100 0.215 0.094 0.188 0.253 0.066 0.328 0.269

D + C + MW 0.088 0.088 0.204 0.074 0.148 0.227 0.060 0.300 0.247

D + C + SR 0.124 0.124 0.225 0.112 0.224 0.262 0.066 0.332 0.270

Table 3: Wiki Results with automated ground truth

@5 @10 @25

P R NDCG MRR P R NDCG MRR P R NDCG MRR

Context (C) 0.212 0.081 0.105 0.277 0.236 0.187 0.170 0.313 0.210 0.410 0.270 0.317

Degree (D) 0.164 0.070 0.083 0.289 0.194 0.166 0.142 0.327 0.189 0.407 0.243 0.339

D + Adamic Adar(AA) 0.208 0.101 0.118 0.355 0.228 0.217 0.189 0.379 0.206 0.439 0.286 0.386

D + Milne Witten(MW) 0.156 0.068 0.079 0.275 0.188 0.163 0.137 0.315 0.182 0.382 0.232 0.325

D + SimRank (SR) 0.264 0.151 0.171 0.384 0.244 0.255 0.233 0.412 0.217 0.455 0.328 0.414

D + C + AA 0.224 0.110 0.137 0.353 0.230 0.219 0.204 0.382 0.213 0.444 0.304 0.387

D + C + MW 0.180 0.074 0.094 0.330 0.198 0.172 0.151 0.362 0.200 0.425 0.259 0.374

D + C + SR 0.308 0.170 0.192 0.398 0.278 0.275 0.258 0.423 0.226 0.470 0.349 0.426

Table 4: Results on WikiContext Dataset with manually obtained ground truth.

these ∆ values and plot them on bar plots, shown in Figure-1. These

values are computed on the manually obtained ground truth. We

observe that D+C+SR performs better than the C and D+C+AA meth-

ods in terms of precision and recall @10 for around 20 queries

and around 30 queries for NDCG @10. Thus, on an average, more

queries are bene�ted by combining contextual and graph based

measures than using either of them in isolation. We also note that

in general, gains for queries that bene�t from the combination are

more than the loss in performance for few queries increasing the

overall performance. We also observe that while both D+C+AA

and D+C+SR achieve better performance when compared with just

using the context, the gains are more prominent for the D+C+SR

method. Given that Adamic Adar (AA) impacts only the entities

that share common neighbors with the input entity while SimRank

has no such limitation, better performance achieved by SimRank

once again lends weight to the importance of going beyond the 1-

hop or 2-hop neighborhood of input entity for �nding contextually

relevant entities.

4.5.4 Contributions of non-neighbors:

Next, in order to understand howmany relevant entities are found

beyond the immediate neighborhood, we compute the lengths of

shortest paths from the query entity to all the relevant entities in

the contextually relevant shortlist (top-100 entities). We then re-

rank these entities by the SimRank based D+C+SR method and

compute the distribution of di�erent path lengths for top 10, 50

and 100 positions. The results are summarized in Figure-2. We

observe that there exist a signi�cant number of relevant entities

beyond the immediate neighbors (Path Length = 1). Methods like

Adamic-Adar and Milne-Witten are based on common neighbors

and hence they can �nd entities only till path length = 2. As we see

in the plot there is signi�cant fraction of relevant entities at path

length greater than 2 and this increases as we increase the value

of K . For K = 100, only 30% of relevant entities are found in the

immediate neighborhood and about 20% of relevant entities lie at

a path length of 3 – a signi�cant number that is never evaluated

by traditional neighborhood methods.

5 CONCLUSIONS AND FUTUREWORK

We studied the problem of �nding relevant entities that the end-

user might want to explore given an input entity and context spec-

i�ed as text keywords. We argued that utilizing this context in-

formation can help overcome the scalability problem of standard

graph based approaches of entity recommendation. We showed

how context can be employed in producing a focused shortlist of

relevant entities by performing a fast search over the complete

graph and then computing graph based features only on this much

smaller set. Experiments conducted over a knowledge graph cre-

ated out of Wikipedia articles showed that by utilizing contextual

information helps retrieve more relevant entities, and combining

with graph features improves the ranking performance. We also
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Figure 1: Bar plot showing performance di�erence per query. X-axis represents queries and bars represent the di�erence

between Precision, Recall, NDCG@10 in the order left to right. First row shows the performance di�erence between ensemble

of Context, Degree Prior and SimRank (C + D + SR) and only the Context (C) while the second row shows comparison against

ensemble with Adamic Adar (AA)
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Figure 2: Bar plot showing percentage of relevant entities at

di�erent path lengths for Top-K entities ranked by (D + C +

SR)

found that a signi�cant fraction of relevant entities lie outside the

immediate neighborhood of input entities, thus corroborating our

initial hypothesis. Since most of the existing work on entity recom-

mendation has focused on immediate neighborhood of the input

entity, explaining how the recommended entities are connected to

the input entity was not crucial. Our future work will focus on

developing methods for explaining how the entities that are not

directly connected to input entities are relevant to the input entity.

For this, both graph based methods (such as path ranking [3, 35])

can be utilized as well as textual explanations [8] by utilizing the

relationships passages could be produced.
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