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Abstract
Dialogue systems that can effectively respond
to user queries in a conversational style have
become ubiquitous. Large Language Mod-
els (LLMs) have been extensively used as a
key component in such systems owing to their
linguistic capabilities and implicit knowledge.
However, such models are prone to hallucinate
while generating a response that can be detri-
mental, particularly in applications where ac-
curacy is critical. While many works have at-
tempted to address the hallucination concern
by supplementing external knowledge in the
input to the LLMs, most of them rely on super-
vised labels to train the knowledge identifica-
tion module. Such labels might often not be
available or difficult to obtain at scale. To ad-
dress this, we propose our method RANKING,
which leverages the structure of the external
document to obtain a ranked subset of relevant
sentences in an unsupervised manner that can
be used for response generation. We model the
dependencies in the form of a graph between
the sentences present in the external document
and the utterances till the given point in the di-
alogue. We demonstrate the efficacy of RANK-
ING on a commonly used document-grounded
conversation dataset (Doc2Dial) where it is ob-
served that RANKING enables generating bet-
ter responses than using the entire document.

1 Introduction

Dialogue systems that possess the ability to re-
spond to user queries have become popular. The
emergence of Chat-GPT (Ouyang et al., 2022) has
further revolutionized the domain by facilitating
human-like question-answering. Users now pre-
fer to search for desired information through in-
teractive dialogues, as opposed to retrieving and
comprehending lengthy documents on their own.

Despite the remarkable capabilities of existing
dialogue systems such as Chat-GPT, the cost, le-
gal and privacy concerns surrounding such models
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make them unsuitable for general business applica-
tions. Additionally, queries posed by the users of a
business application may require domain-specific
knowledge, which a Large Language Model (LLM)
may not be privy to. Further, such models are sus-
ceptible to hallucinating their responses (Roller
et al., 2021; Marcus, 2020) which can be detri-
mental in scenarios where accurate responses are
critical. To mitigate this, there is a growing interest
in incorporating external knowledge while using
such LLMs (Kaur et al., 2022).

Numerous works have attempted to leverage
the knowledge present in external documents to
generate automated dialogue responses. Most ap-
proaches rely on supervised labels to train knowl-
edge identification module to retrieve text from an
external document that is relevant to the dialogue
(Lian et al., 2019; Kim et al., 2020; Zheng et al.,
2020; Wu et al., 2021). Obtaining such labels re-
quires manually annotating sentences that should
be selected by the model at each step in the dia-
logue which can be expensive and time-consuming.
This creates a need to develop approaches that can
identify relevant external knowledge in an unsuper-
vised manner (Huang et al., 2021). Typical unsu-
pervised knowledge selection methods employ se-
mantic similarity between the embedded represen-
tations of the dialogue context and the text present
in external knowledge (Huang et al., 2021; Dinan
et al., 2019). However, this ignores the structure in
which information is organized in an external doc-
ument which has been shown to be useful (Djeddal
et al., 2021). Such methods also fail to properly
capture the relationship between the information
flow in the dialogue utterances and structured in-
formation in the external document1.

To address this, we propose our method RANK-
ING (Graph-Guided Unsupervised Knowledge
Identification for Dialogue Agents) that captures
the dependencies between the knowledge sen-

1Please refer to Appendix A for detailed related work



tences, the user and the agent utterances from the
dialogue through a graph by representing them as
nodes. The graph also captures information flow
in the document based on its structure (such as
paragraphs). RANKING learns contextualized rep-
resentations for each node and provides a ranked
list of relevant sentences from external knowledge
for response generation. We study different design
choices for the underlying graph and observe that
RANKING performs better than simple TF-IDF
or BERT-based embedding similarity for select-
ing relevant sentences. Further, it is observed that
RANKING helps in precisely selecting relevant in-
formation by filtering out irrelevant noisy sentences
and performs better than providing the entire docu-
ment as input for response generation.

2 Our Methodology

Problem Definition: Given a dialogue D =
{u1, a1, u2, a2, ..., ui} (where uj and aj repre-
sent the user and agent utterances respectively);
and a supporting grounding document (K =
{p1, p2, ...., pP }) comprising of paragraphs, the
task of the modeled agent is to generate the re-
sponse ai. Here pi = {si1, si2, ....si|pi|}; sqk repre-
sents the kth sentence in the qth paragraph; |pi| rep-
resents the total number of sentences in paragraph
pi and P represents the number of paragraphs in K.
The model has to select sentences from K relevant
to D while generating the next agent response ai.

Overview of RANKING: Figure 1 depicts the
architecture of our method. We construct a
Document-Dialogue graph G by representing each
utterance in D as well as paragraphs and sentences
in K as nodes. The nodes are connected with
edges to capture the semantic dependencies be-
tween them. Higher-order relationships between
different types of nodes are encapsulated using the
Node2Vec algorithm that updates the embeddings
of each node by utilizing the underlying graph
structure. Subsequently, the similarity between the
node representing the most recent user utterance
and each knowledge sentence is estimated to rank
the sentences in K. The top-ranked sentences are
provided as input in addition to the dialogue history
to a response generation module that consists of a
pre-trained generative LLM.

2.1 Document-Dialogue Graph

We refer to our proposed graph structure as Docu-
ment Dialogue Graph (Figure 2 in appendix B). It

consists of 4 types of nodes: sentence nodes (sqk),
paragraph nodes (pi), user utterance nodes (ui),
and agent utterance nodes (ai). We first explain the
graph structure followed by the intuition behind
it. A sentence node in a paragraph is connected
with the node representing the next sentence in the
paragraph (sik → sik+1). A paragraph node is con-
nected to the next paragraph (pi → pi+1) and also
to the sentence nodes in that paragraph (sik ↔ pi).
The user and agent utterance nodes are connected
to the next utterance in the dialogue (ui → ai,
ai → ui+1). Utterance nodes are also connected to
the paragraph nodes as (uj → pi → aj).

The graph nodes and the edges between them
model various interactions needed to perform
knowledge selection. Paragraph nodes and directed
edges between them are important to encapsulate
the hierarchical structure and information flow in
the document. The flow of information between the
dialogue and the document is facilitated through
edges from user utterance nodes to paragraph nodes
and back to agent utterance nodes. This allows it
to ground the user query in knowledge sentences
and match them with the agent response. The undi-
rected edges between sentences and paragraphs
facilitate the interactions between the local infor-
mation present within a paragraph and the content
in other paragraphs and dialogue utterances. We
initialize the representation of each node by pro-
cessing the corresponding text through a sparse
featurizer - TF-IDF. The weight for an edge is com-
puted as cosine similarity between the correspond-
ing node representations. We ablate over different
graph structures in the experiments section.

2.2 Learning Node Representations
To obtain the contextual representation of each
node based on the graph structure, we use
Node2Vec (Grover and Leskovec, 2016), an algo-
rithm used to learn continuous feature representa-
tions of graph nodes. Specifically, it treats each
node in the random walk sequence as a target node
and the surrounding nodes as context nodes. It then
uses stochastic gradient descent to maximize the
likelihood of predicting the context nodes given
the target node. We obtain representation Vi =
Node2Vec(G)[i] for ith node in G.

2.3 Sentence Selection
We select the most relevant knowledge sentences
(sqk) based on the most recent user query (ui) in
the dialogue. This is achieved by computing the



Figure 1: Model architecture of RANKING comprising of creating a graph derived using the dialogue history and
text present in the grounding document. To capture the higher-order semantic dependencies between the nodes,
Node2Vec is used to update the representation of each node by taking into consideration the graph structure. Finally,
the similarity between the node representing the most recent user utterance and knowledge sentences is used to rank
the latter and provided as input along with the dialogue history to the response generation model.

pairwise cosine similarity between each sqk with the
representations of ui. The top-k sentences (Ksel =
{s1, s2, ...., sk}) are selected based on this score
and provided as additional context to a response
generation module. The ordering of the sentences
is maintained as seen in the document to avoid
disturbing information flow.

2.4 Response Generation

A pre-trained generative LLM is fine-tuned to gen-
erate the agent response (ai) conditioned on the
dialogue context and the selected knowledge sen-
tences. In our case, we use BART as the pre-trained
LLM to perform response generation. The input to
the generative LLM is provided as follows:

X = [CLS][“query”]ui[“usr”]u1[“agt”]a1...

[“usr”]ui[“grounding”]s1[SEP ]....sk[SEP ]

Special tags such as [“query”], [“usr”], [“agt”],
[“grounding”] etc. are used to instruct the model
about the corresponding segments of the input.

3 Experiments

We now discuss the experimental setup to study the
efficacy of RANKING and various design choices.

3.1 Dataset

We evaluate our proposed model using a goal-
oriented document-grounded dialogue dataset
Doc2Dial (Feng, 2021). It contains 3,474 dialogues
with 44,149 turns for training and 661 dialogues

with 8539 turns for evaluation. It contains multi-
turn conversations grounded in relevant documents
from four domains for social welfare.

3.2 Implementation Details

For knowledge identification, we use the standard
Node2Vec implementation2 with p = 1, q = 0.1,
number of walks = 200, output vector size of 128,
walk length of 10 and window size 5. These are
decided after hyper-parameter tuning using Grid
Search. We set the number of knowledge sentences
to be selected as k = 15. Training is performed
for 10 epochs with an initial learning rate of 3e− 5
using Adam optimizer (epsilon = 1e− 6) (Kingma
and Ba, 2014). The BART model is fine-tuned on
a single A100 GPU with 40GB memory, 24 vCPU
threads, and 170GB RAM.

3.3 Evaluation Metrics

We use Average Rank as the metric to evaluate
the knowledge identification task. Given the ac-
tual set of grounding sentences - sg1, s

g
2, ...s

g
m for

a given turn in a dialogue; and the corresponding
rank of these sentences as predicted by a model -
r1, r2...., rm, the corresponding Rank (R) is esti-
mated as R =

∑
i ri
m .

Based on the above definition of rank, Average
Rank is computed accordingly by averaging over
the evaluation samples. BLEU (Papineni et al.,
2002; Post, 2018) metric is used to evaluate the
response generation module.

2https://github.com/eliorc/node2vec



Model Average Rank
Sentence BERT 19.62
TF-IDF 18.76
RANKING
(our method)

11.09

Table 1: Evaluation of RANKING on the validation
set of Doc2Dial dataset. It can be seen that our method
improves the ranking (lower is better) of relevant sen-
tences significantly over just using TF-IDF or BERT
embedding-based similarity.

Model BLEU
Entire document as input 17.67
RANKING (unsupervised) 18.09
DIALKI (supervised) 19.01

Table 2: Response generation results on Doc2Dial
dataset. RANKING improves the response quality com-
pared to providing the entire document as input. RANK-
ING also bridges the performance gap with supervised
baseline - DIALKI which uses supervised labels for
training knowledge identification module.

3.4 Comparison with Baselines

We compare RANKING with the method where the
entire document K is provided as input with the dia-
logue context D as input to the response generation
model. We also compare with other simple unsuper-
vised approaches like BERT embedding-based and
TF-IDF-based ranking which uses cosine similarity
between corresponding feature embeddings. This
also evaluates the efficacy of utilizing the graph
structure toward computing better embeddings for
ranking. We also compare with DIALKI (Wu et al.,
2021), a method that uses supervised labels for
training the knowledge identification module.

It can be seen in Table 1 that our model improves
knowledge identification significantly over using
the TF-IDF or BERT embedding-based ranking
outlining the importance of graph connections in
obtaining enriched and contextualized embeddings.
Further, Table 2 shows improvement in response
generation BLEU score compared to providing the
whole document as input. This highlights the fact
that response generation improves if the selected
knowledge is more precise, less noisy and the pro-
portion of irrelevant sentences is lesser. Further, it
can be noticed that RANKING helps in bridging
the performance gap between unsupervised meth-
ods and thee supervised baseline - DIALKI. Please
refer to appendix C for qualitative analysis.

Description Average Rank
Information Flow between dialogue and document
Agent ->Para ->User 21.231
Para<->User ->Agent 12.684
User ->Para ->Agent 11.697
Information Flow in the Document
Undirected Sentence,
Para Connection

11.697

Sentence ->Para 17.040
Undirected Adjacent
Para Connection

11.341

Directed Adjacent
Para Connection

11.112

Table 3: Ablation experiments for the design of the
graph structure to highlight the importance of different
edges and their directionality.

3.5 Abalation Study
We discuss the experiments performed to make de-
sign choices related to the graph structure. Results
are shown in Table 3. We ablate over different ways
of connecting various types of nodes as well as the
directionality of edges. We observe that having
a directed edge from the user utterance nodes to
the paragraph nodes followed by an edge with the
agent utterance node performs the best. For captur-
ing the information flow within the document, we
compare having directed vs. undirected edges be-
tween the sentence and paragraph nodes where the
latter is found to perform better. Finally, directed
edges between the adjacent paragraph nodes based
on the order in which they appear in the document
performs better than other options.

4 Conclusion and Future Work

We introduce a novel graph-based knowledge se-
lection method RANKING that identifies relevant
external knowledge in an unsupervised manner
which can be used to generate better dialogue
responses. RANKING captures the interdepen-
dencies between the dialogue utterances and text
present in an external document. Most prior works
rely on supervised labels to train the knowledge
identification module which might not always be
available. We show that our method improves
knowledge selection over other unsupervised base-
lines and bridges the gap in performance with super-
vised methods. We also perform ablations to study
the importance of graph structure. As future work,
it can be explored to jointly train the knowledge
identification and response generation modules to
enable them to provide feedback to each other.
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A Related Work

Existing approaches mainly apply a pipelined ap-
proach to perform Knowledge Identification fol-
lowed by Response Generation by utilizing sepa-
rate models for each task (Daheim et al., 2021; Xu
et al., 2021; Li et al., 2021; Zhao et al., 2020; Lin
et al., 2020). Some works have also attempted to
jointly model both the steps together as a single
generative objective (Guu et al., 2020;Lewis et al.,
2021; (Gao et al., 2022)).

Very limited works have addressed the issue of
identifying the relevant knowledge in an unsuper-
vised manner. For instance, Li et al., 2019, Yavuz
et al., 2019, and Lin et al., 2020 leverage implicit
soft fusion techniques to combine externally avail-
able knowledge resources, without an explicit su-
pervised training step. Although some attempts
have been made to perform an unsupervised se-
lection of external knowledge based on semantic
similarity (Ghazvininejad et al., 2018; Huang et al.,
2021 Dinan et al., 2019), the top-1 knowledge se-
lection criteria employed by such methods make
it difficult to identify the knowledge that should
be present in the target response to be generated
(Huang et al., 2021). Consequently, we employ top-
k selection to improve the robustness of knowledge
selection.

Some works have attempted to address the
knowledge identification problem using graphs
(Kim et al., 2022; Li et al., 2022; Wang et al., 2022).
They model transitions between user and agent ut-
terances in a dialogue to better identify knowledge
over a knowledge graph. Most of these approaches
are supervised and do not take full advantage of
the interactions between the dialogue and the docu-
ment, unlike our work. Moreover, these approaches
rely heavily on standard knowledge graphs that are
either provided or built on top of documents. In
contrast, we focus on designing an unsupervised
pipeline based on a custom graph that incorporates
specific structures to ensure optimal performance
for knowledge-grounded dialogue generation.

B Graph Structure

Our proposed graph structure is called a Document
Dialogue Graph (Figure 2). It consists of 4 types
of nodes: Sentence Nodes (sqk), Paragraph Nodes
(pi), User utterance nodes (ui), and Agent utterance
nodes (ai). We explain the graph structure first
followed by the intuition behind it. A sentence
node in a paragraph is connected with the node

Figure 2: Document Dialogue Graph Structure. The
document dialogue graph consists of nodes representing
spans/sentences (green nodes), paragraphs (red nodes),
user utterances (blue nodes) and agent utterances (or-
ange nodes) and has connections to model interactions
between each of these.

representing the next sentence in the paragraph
(sik → sik+1). A paragraph node is connected to
the next paragraph (pi → pi+1) and also to the
sentence nodes in that paragraph (sik ↔ pi). The
user and agent utterance nodes are connected to
the next utterance in the dialogue history (ui → ai,
ai → ui+1). Utterance nodes are also connected to
the paragraph nodes (uj → pi → aj).

C Qualitative Analysis

Let us have a look at how the ground knowledge
can be identified using examples from the dataset.
This will also help us to reason about the impor-
tance of using a graph-based approach to identify
relevant knowledge.

C.1 Example 1

Past dialogues reveal which topic is being discussed
and can be used to locate the section which will
have our grounding sentence. Thus noting where
previous sentences have been grounded is impor-
tant. This is done using edges between documents
and dialogues. Refer to Figure 3 for an example.



Figure 3: The first dialogue mentions Medical Care Section and the rest of the user queries are all grounded in the
Medical Care Section.

C.2 Example 2
Conversation flow sometimes follows the informa-
tion flow in the section too. Thus edges between
adjacent paragraphs and utterances are important.
Refer to figure 4 for an example.

C.3 Example 3
There are two options for the agent to look for
grounding knowledge: either follow the same topic
on which the previous dialogue is based OR jump
to a new topic which can be determined based on
the current dialogue itself (not previous reference
needed). Thus the two types of connections: be-
tween utterances and utterances and documents are
important. Refer to Figure 5 for an example. An
important thing to note is that the conversation does
not jump back to a topic discussed in an earlier part
of the conversation without the current dialogue
being enough to decide that we have to jump to
that topic. Thus it is unnecessary to model jumps
to topics discussed earlier in the conversation and
only recent topics have an effect on the current
grounding which is done by our model with the
help of edges between adjacent utterances in the
conversation.



Figure 4: The information flow in the dialogue follows the information flow in the document.

Figure 5: Grounding Knowledge can be based on the same topic as the previous utterance or a new topic. The same
coloured lines refer to the same topic.


