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Abstract. Persistent homology is a powerful tool in Topological Data Analysis
(TDA) to capture topological properties of data succinctly at different spatial res-
olutions. For graphical data, shape and structure of the neighborhood of individ-
ual data items (nodes) is an essential means of characterizing their properties. We
propose the use of persistent homology methods to capture structural and topo-
logical properties of graphs and use it to address the problem of link prediction.
We achieve encouraging results on nine different real-world datasets that attest to
the potential of persistent homology based methods for network analysis.

1 Introduction

A graph structure representing pairwise relations or interactions among individuals or
entities recurs in diverse real-world applications such as social and professional net-
works, biological phenomena such as protein-protein interactions [10], and citation and
collaboration networks [4]. In all these applications, understanding how the network
evolves and the ability to predict the formation of new, hitherto non-existent links is
extremely useful and has crucial applications such as predicting target genes for cancer
research [31], social network analysis, and recommendation systems.

The Link Prediction Problem: Let U denote the set of all possible edges in graph
G = (V,E) with V as the vertex set, and E as the edge set. If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The
set U −E is called the set of potential links. Often, in real-world settings, only a small
subset of links u ∈ U will materialize in future with |u| << |U |. For example, in a
typical social network that has hundreds of millions of users (nodes), each user may
only be friends (form an edge) with only a few hundred users. Given G = (V ;E),
the task of identifying the edges e ∈ u is challenging and requires understanding and
modelling the differences between the sets u and U − u.

Why Persistent Homology for Link Prediction?: Persistent homology (PH) [11,12] is
an algebraic tool for describing the structural features of a topological space at different
spatial resolutions. By embedding a high-dimensional dataset in a topological space, PH
allows us to extract and study crucial information about the structure and shape of the
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dataset in a succinct manner. Since understanding the evolution and formation of edges
in networks involves analyzing the structure and shape of the underlying networks, we
posit that PH offers a theoretically sound framework to study such toplogical proper-
ties of networks. As an emerging technique in data mining, PH has been successfully
applied in various applications such as text analysis [42], image analysis [8], temporal
network analysis [33,16], and network classification [7].

Persistence Diagram: A popular tool from the realm of PH is persistence diagram
(PD). Homology of a point set X roughly characterizes it in terms of shape-features
like connected components, tunnels and voids. Given a graph G = (V,E), mapping the
nodes vi ∈ V to the points {xi}1≤i≤n ∈ X , homology of X exhibits G in terms of
the shape-features formed by its nodes and edges. However, these features depend a lot
on the resolution or the scale at which they are studied, and it is crucial to study them
across a spectrum of spatial resolutions. The features that persist across resolutions
constitute its persistent homology (PH) represented by its PDs. PD is depicted as a set
of points in a two-dimensional space whose indices correspond to the resolutions at
which the topological features are “born” and subsequently, “die”. Differences between
PHs of two graphs (or subgraphs) can be captured by dissimilarity measure such as The
Wasserstein or Bottleneck [12, Chapter VIII] distance between their corresponding PDs.
Using such dissimilarity measures between PDs, we understand how an adaptive-sized
extended neighborhood of query nodes changes in terms with regards to their PH when
an edge is added (removed) to (from) the graph.

Our Contributions: We describe a novel approach for predicting links in networks
by utilizing the Persistence Diagrams of different neighborhood sub-graphs around the
query nodes. Specifically, we characterize the existence of a potential link between a
pair of query nodes in terms of a dissimilarity measure between a number of specially
constructed neighborhoods. We first present the necessary mathematical notions to de-
scribe our method: the PD of a graph and the distance measures between PDs (Sec-
tion 2). We then argue and explain that for a pair of nodes, the PDs of the subgraph in-
duced by their extended neighborhood should not change much by addition or removal
of a naturally existing edge. We also provide a theoretical insight into the working of our
approach (Section 3). We describe and discuss the experiments conducted using nine
different real-world network datasets that provide strong empirical evidence for the po-
tential of application of PH for link prediction, and network analysis in general. Our
proposed approach achieves robust performance across all the datasets when compared
with six commonly used baseline methods for link prediction (Section 4).

Overview of and Comparison with Related Work: Most methods for link prediction
utilize the structural properties of the underlying network to predict formation of new
edges. Some of the most frequently used methods [1,29] utilize the intuition that the
likelihood of a link between two nodes is high if they share many common neighbors.
Despite being widely adopted due to their intuitive nature and ease of computation, such
methods are limited to the second order neighborhood of the source node and ignore the
global structural information about the underlying network. On the other hand, studying
the shape features of the graph at varying resolutions enables us to capture the global
structure information.
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Different other approaches that consider global information for link prediction in-
clude measures based on an ensemble of all paths (such as the Katz score [21]), mea-
sures derived from conducting random walks over the graph [2,18], and learning con-
tinuous vector representations of nodes in the graph such that the nodes sharing similar
structural properties are mapped close to each other in the latent space (e.g., Deep-
Walk [34], LINE [38], node2vec [15], struc2vec [35]). Ensemble methods that comple-
ment the network information with external information such as text documents have
also been proposed [6]. In contrast to these methods that need to explore the entire graph
for capturing global information, our approach is adaptive: we only study the combined
neighborhood whose size varies depending on the sparsity of the graph. Thus, we can
also avoid the large cost of exploring the entire graph.

2 Persistent Homology of a Graph

For a self-contained exposition, we briefly present the definitions of main concepts used
in this work. For a detailed description, a reader can refer to any well-known book on
computational topology [12]. A quick yet sufficient introduction to some more basic
concepts can also be found in the extended pre-print of this paper [5].

Persistence Diagram: Let ∆ be a finite abstract simplicial complex and {Γi}i∈I s.t.
∅ = Γ0 ( Γ1 ( Γ2 . . . ( Γp = ∆ be a filtration of∆. For a pair i, j s.t. 0 ≤ i ≤ j ≤ p,
this inclusion relation among Γis induces a homomorphism on the simplicial homology
group of each dimension n ∈ Z given by f i,jn : Hn(Γi)→ Hn(Γj).

The nth persistent homology (PH) group is the image of the homomorphism f i,jn
given by Im(f i,jn ). In turn, the nth persistent Betti number is defines as the rank of
Im(f i,jn ) given by βi,jn = rank(Im(f i,jn )).

The nth persistent Betti number counts how many homology classes of dimension
n survives a passage from Γi to Γj . We say that a homology class α ∈ Hn(Γi) is
born at resolution i if it did not come from a previous sub-complex: α /∈ Im(f i−1,in ).
Similarly, we say that a homology class dies at resolution j if it does not belong to the
sub-complex Γj and belonged to previous sub-complexes.

Birth

D
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th

Fig. 1. PD

A persistence diagram (PD) is a plotting of the points (i, j) cor-
responding to the birth and death resolutions, respectively, for each of
the homology classes. Because a homology class can not die before it
is born, every point (i, j) lies above the diagonal x = y. If a homology
class does not die after its birth, we draw a vertical line starting from
the diagonal in correspondence to its birth. For practical purposes, we
take a persistence threshold τ , and assume that every homology class
dies at the resolution τ . A typical PD is shown in Figure 1.

Distance between PDs: Let P1 and P2 be two PDs. Let η be a bijection
between the points in the two diagrams. We define the following two
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distance measures:

(a) Wasserstein-q distance :Wq(P1, P2) = ( inf
η:P1→P2

∑
p∈P1

||p− η(p)||q∞)
1
q (1)

(b) Bottleneck Distance :W∞(P1, P2) = inf
η:P1→P2

sup
p∈P1

||p− η(p)||∞ (2)

The Wasserstein-q distance is sensitive to small differences in the PDs, whereas, the
Bottleneck distance captures relatively large differences.

Rips Complex: A Vietoris-Rips Complex, also called a Rips complex is an abstract
simplicial complex defined over a finite set of points X = {xi}ni=1 ⊆ X in a metric
space (X , d). Given X and a real number r > 0, r ∈ R, a Rips complex R(X, r)
is formed by connecting the points for which the balls of radius r

2 centered at them
intersect. In the context of the same point set, we useRr to denoteR(X, r). A 1-simplex
is formed by connecting two such points and corresponds to an edge. A 2-simplex is
formed by 3 such points and corresponds to a triangular face.

Rips Filtration: Given a set of points X = {xi}ni=1 ⊆ X , let 0 = r0 ≤ r1 ≤ r2 . . . ≤
rm denote a finite sequence of increasing real numbers, which we use to construct Rips
complexes {Rri}mi=1 as defined above. Clearly, by construction of Rips complexes the
sequence {Rri}mi=1 is nested and thus provides a filtration of Rrm :

∅ = Rr0 ( Rr1 ( Rr2 . . . ( Rrm

Deriving the PH groups via homomorphism over a Rips filtration, we obtain a PD
associated with the point setX . Please note that to compute the Rips filtration associated
with a point set X we need only the relative pairwise distances between the points
xi ∈ X . Essentially, we need a symmetric distance matrix D = {d(xi, xj)}n,ni=1,j=1 to
compute the PD of X . Next, we will use this method to compute the PD of a graph.

Remark: Without going in details, we would like to mention that there are many
choices for filtrations and distance metric available when applying PH to a graph1,
however, for this application, computational simplicity and well-developed software
that could scale to real world datasets were the main factors for us to decide on Rips
filtration with shortest-path metric.

2.1 Persistence Diagram of a Graph

Consider a graph G = (V,E), where V = {vi}ni=1 is the node set and E = {ei}mi=1 is
the edge set. We associate a positive weightwei ∈ R, wei > 0 with each of the elements
ei ∈ E. For an unweighted graph, wei = 1,∀ei ∈ E. If two nodes are not connected
by an edge, we take the (virtual) edge-weight between them as∞, which for practical
purposes is taken as a large positive real number M ∈ R. The shortest-path distance
Dsp(vi, vj) between the nodes vi, vj ∈ V is defined as the sum of weights of the edges
on the path starting at vi and terminating at vj .

1 https://topology.ima.umn.edu/node/53
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Now consider the metric space (X , d) equipped with a metric d. Let X = {xi}ni=1

be a set of points in (X , d) such that the points in X correspond to the nodes in V =
{vi}ni=1. In an undirected graph, where the shortest-path distanceDsp between any two
nodes is symmetric, it makes a natural choice for a metric. We can verify that Dsp

satisfies all the properties of a metric: for arbitrary vi, vj , vk ∈ V , (a) Dsp(vi, vj) ≥ 0,
(b)Dsp(vi, vj) = 0 ⇐⇒ vi = vj , (c)Dsp(vi, vj) = Dsp(vj , vi) and (d)Dsp(vi, vj)+
Dsp(vj , vk) ≥ Dsp(vi, vk). Therefore, for points xi, xj ∈ X , which correspond to
vi, vj ∈ V , we take the metric as d(xi, xj) = Dsp(vi, vj).

For a directed graph, the shortest-path distance between two nodes is not symmetric.
In this case, d(xi, xj) = Dsp(vi, vj) provides a quasi-metric: it satisfies (a), (b) and (d)
as described above. From a quasi-metric d(xi, xj), we derive a metric as follows:

fa(xi, xj) = a×d(xi, xj) + (1− a)×d(xj , xi)

where a ∈ [0, 1/2] [40]. For a = 1
2 , fa(xi, xj) is the average of the two directed

distances. In this work, for a metric space representation of a directed graph, we take
d(xj , xi) =

Dsp(vi,vj)+Dsp(vj ,vi)
2 , where xi, xj ∈ X correspond to vi, vj ∈ V .

Computing the all-pair-shortest-path (APSP) in an undirected graph [19] gives a
symmetric distance matrix D = {dij}n,ni=1,j=1. For a directed graph, the distance matrix
is not symmetric; therefore, to impose a metric structure we apply the aforementioned
method: dij = dji =

dij+dji
2 . With that, we have a complete pipeline to compare the

shape-features of two graphs (or subgraphs) using PH.

3 Link Prediction via Persistent Homology

Having discussed the background to compute the quantitative differences between a
pair of subgraphs with respect to their shape-features, we describe how to use that to
understand and predict the existence of a potential link. First, we summarize the entire
pipeline of computing the PD for a graph G.

PD Computation: To start with, we compute the all-pair-shortest-path distance ma-
trix D using Johnson’s algorithm [19]. In case G is directed, D is made symmetric as
described in the section 2.1. Thereafter, D and a persistence-threshold τ are used to
compute the PD of G. Efficient implementations for PD computations, such as the one
by Bauer [3], could be used for this purpose.

Now consider the cases of combined-neighborhood of nodes u and v as shown in
Figure 2. We consider two scenarios with respect to reasonably extended neighborhoods
of the two nodes, as shown in Figure 2 (a) and (b). A potential link is shown by the
dotted curve.

Essentially, a case of predicting a link between an arbitrary pair of nodes lies on the
spectrum of scenarios starting at the one shown in the fig. 2 (a) and stretches towards
the ones similar to the fig. 2 (b). As we explained before, the existence of a possible link
has higher chances as we move away from the case of the fig. 2 (a) on this spectrum.

With that observation, we explore and understand how the difference in shape-
measures, as provided by the distances in the PDs of a number of subgraphs induced by
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Fig. 2. Combined-neighborhood of u and v, when they have (a) no edges connecting (b) multiple
edges connecting.

the combined-neighborhood of u and v, varies when we examine the cases of arbitrary
pair of nodes. This is presented in the Algorithm 1.

Given a graphG = ({vi}ni=1, {ek}mk=1), for a k ≤ n, first, we compute the subgraph
of G induced by the i-hop neighbors of u and v, where 1 ≤ i ≤ k, see lines 2 and
3. Thereafter, we compute the subgraph induced by an i-hop combined-neighborhood
the two nodes, where where 1 ≤ i ≤ r, see line 4. The radius of the individual and
combined neighborhoods, k and r, respectively, are chosen such that there could be a
positive probability of covering of the combined-neighborhood by the union of the two
individual neighborhoods, and therefore, k ≤ 2r. From this subgraph, we induce two
subgraphs corresponding to the existence and non-existence of a link between the query
nodes, see lines 5 and 6. Following our intuition, a missing link in a complete graph has
high chances of existence, therefore, we also construct a complete graph over the nodes
of the combined neighborhood, line 7. Having collected these subgraphs, we compute
their PDs as described previously.

In the PDs, we have considered only 0th PH groups. This is because the cycles in
a graph, which correspond to its 1st PH group, are never destroyed as there are no 2-
faces. Thus, for our purpose, distances between the 1-dimensional PDs of the subgraphs
would not help much. In the subsequent discussion, by the topological features we shall
mean the 0th dimensional features i.e. the number of connected components.

We compute the Wasserstein-2: d1, d2, d3 and d4, and the Bottleneck: d5, d6, d7 and
d8 distances between the PDs, as shown in the lines 11 to 15. They signify how much
the induced subgraphs are dissimilar with respect to their shape-features. We use dis,
1 ≤ i ≤ 8, in our experiments to perform link-prediction as a ranking task (Section 4).

Computational cost: To implement Algorithm 1, we leveraged parallelization as much
as possible. For example, for shortest-path computation, we use a simple shared-memory
thread-based parallelization of applying Dijkstra’s algorithm, which runs in Õ(|V |2)
(assuming |V | > |E|), for each of the nodes, and thus pay roughly Õ(|V |3/p), where
p is the number of threads, and store the APSP matrix in a database. The neighborhood
and combined neighborhood computation steps are linear in the maximum degree, thus
O(|V |). The PD computation is performed by reduction of the APSP matrix to cost
O(|V |3) arithmetic operations. Wq and W∞ distance computation steps are linear in
the size of PDs. Effectively, Algorithm 1 costs O(|V |3). Next, we sketch a theoretical
justification of our approach.
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Algorithm 1 Bottleneck and Wasserstein-2 dist. computation.
Input: Graph G, Nodes u, v, Neighborhood radius k, Combined-neighborhood radius r,

persistence-threshold τ , a boolean isD to indicate if directed.
1: Algorithm GETDIST(G, u, v, k, r, τ, isD)
2: Nk

u ← GETNBRS(u, k); .Induced subgraph over i-hop neighbors of
u, where 1≤i≤k.

3: Nk
v ← GETNBRS(v, k);

4: Nr
u,v ← GETCOMBINEDNBRS(u, v, r); .Induced subgraph over

i-neighbors of u or v or both, where 1≤i≤r.
5: Nr+

u,v ← Nr
u,v ∪ (u, v); .Induced subgraph Nr

u,v augmented with the
edge (u, v).

6: Nr−
u,v ← Nr

u,v−(u, v); .Induced subgraph Nr
u,v without the edge (u, v).

7: C(Nr
u,v) ← MAKECOMPLETE(Nr

u,v); .The complete graph over the
nodes of Nr

u,v.
8: Pu ← PD(Nk

u , τ, isD); .Persistence diagram of the subgraph
induced by Nk

u.
9: Pv ← PD(Nk

v , τ, isD); P+ ← PD(Nr+
u,v, τ, isD);

10: P− ← PD(Nr−
u,v, τ, isD); P c ← PD(C(Nr

u,v), τ, isD);
11: d1 ← W-2-DIS(P+, P−); d2 ← W-2-DIS(P+, P c);
12: d3 ← W-2-DIS(P+, Pu); d4 ← W-2-DIS(P+, Pv);
13: .Wasserstein−2 distances between the Ps
14: d5 ← B-DIS(P+, P−); d6 ← B-DIS(P+, P c);
15: d7 ← B-DIS(P+, Pu); d8 ← B-DIS(P+, Pv);
16: .Bottleneck distances between the Ps
17: d̃← {d1, d2, d3, d4, d5, d6, d7, d8}; .A vector of the eight distances.
18: Output d̃;
19: end Algorithm

3.1 Why this algorithm works?

While the commonly used link-prediction heuristics [1,29,23,39], have been empiri-
cally validated, to the best of our knowledge, only a limited number of works [36,9]
have explored why such methods should work. McPherson et al. [28] suggest that the
network of real-life interactions stem from homophily. Hoff et al. [17] introduced a sta-
tistical model for such networks, that was extended by Sarkar et al. [36]. Essentially,
all these models represent a graph-node by a point in a latent d-dimensional Euclidean
space and suggest that the probability of the existence of a link between two query
nodes u and v can be defined in terms of a parameterized logistic function of the dis-
tance between the corresponding points as follow [36]:

P (u ∼ v|duv) =
1

1 + eα(duv−r)
(3)

where u ∼ v denotes the existence of a link between the nodes u, v, and α and r are
the parameters of function-sharpness and sociability of the nodes, respectively. Thus, a
smaller distance duv in the latent space implies a higher probability of link between u
and v. Under the constraints of space, we now explain how decreasing the distances d1
to d8 in Algorithm 1 corresponds to decreasing duv in the eq. (3).



8 Bhatia et al.

First, note that the distances dis, i ≤ 1 ≤ 8, are essentially based on the optimal
matchings between the PDs and behave very differently from the Euclidean metrics.
See eqs. (1) and (2): higher the value of η(p) for each p ∈ P1, lower are theWq(P1, P2)
and W∞(P1, P2). η(p), as a bijection, represents matchings between the PDs P1 and
P2. Thus, the lower values of dis reflect higher matchings between the PDs indicating
that the compared subgraphs have more similar topological features. An attentive reader
would also have noticed that the PDs that we compare to generate dis, correspond to
the simplicial sub-complexes over the subsets of the same dataset obtained by the em-
bedding of a graph in a metric space. It is easy to observe that these subsets overlap by
virtue of the construction of the subgraphs induced by the combined neighborhoods of
the query nodes. In this setting, a higher matching in the PDs indicates highly similar
topological features and these similar features are over the common subset of the sub-
graphs. Now, we discuss the individual subgraph comparison summaries captured by
the dis:
(a) d1 and d5: smaller values of d1 and d5 indicate that augmenting a possible edge
between the query nodes does not change the topological features of the subgraph in-
duced by the combined neighborhood. (b) d3 and d7: their smaller values imply that the
combined neighborhood itself is not much different from the neighborhood of the first
node in terms of the topological features. (c) d4 and d8: same as (b) for the second node.
(d) d2 and d6: smaller values of d2 and d6 indicate that the subgraph induced by the
combined-neighborhood is closer to a complete graph in terms of topological features.

Let nl(u, v) denote the number of paths of length l between the nodes u and v. From
the above summary, in general terms, it can be inferred that smaller the values of dis, i ≤
1 ≤ 8, (a) the combined-neighborhood lies closer to the structure shown in Figure 2(b)
on the spectrum of the scenarios mentioned in Section 3. For example, smaller d2 and
d6 would indicate that the combined-neighborhood is similar to a complete graph in
which the likelihood of completion of a missing link is very high, and (b) because of the
fact that higher overlap of neighborhood subgraphs, nl(u, v) is non-zero for increasing
number of small path-lengths l.

In our method, the metric space embedding of the graph translates it into a point
cloud in Euclidean space where even though the points are at non-deterministic po-
sitions, the distance between them is deterministic. Essentially, it aligns to the deter-
ministic model, (see Sections 3 and 4 of [36], with (a) identical radii for unweighted
graphs and (b) non-identical radii of weighted graphs. Thus in the spirit of the discus-
sion in Section 5 for the bounds over duv , the Lemma 5.7, and Theorem 5.8 in the
paper by Sarkar et al. [36], and inferring from the point (b) in the previous paragraph,
P (u ∼ v|duv) increases with decrease in the values of dis, i ≤ 1 ≤ 8.

4 Experiments

4.1 Experimental Protocol

Datasets: Table 1 lists the nine publicly available datasets that were used for evaluating
our proposed approach. The datasets selected are from different domains and widely
used in the study of complex networks.
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Baselines: We compare the performance of our approach with six frequently used meth-
ods for link prediction. We consider Common Neighbors (CN), Adamic-Adar (AA) [1]
and Milne-Witten (MW) [29] as representative local methods . We chose Preferential
Attachment (PA), node2vec (N2V) [15], and struc2vec (S2V) [35] as representative
global methods.

# nodes # edges N/w Type

DC [32] 112 425 Word Co-occurrence n/w
ATC2 1226 2615 Air Traffic n/w
Cora [26] 2708 5429 Citation n/w
Euroad [37] 1174 1417 Road n/w
Figeyes [14] 2239 6452 Protein interaction n/w
Yeast [10] 1870 2277 Protein interaction n/w
Power [41] 4941 6594 Power Grid n/w
arXiv [24] 5242 14496 Collaboration n/w
Twitter [27] 23370 33101 Social N/w

Table 1. Different datasets used in experiments

Implementation: We implemented
our approach in C++ using the
Ripser library [3] for computing
PDs. We used the publicly avail-
able code3 of Kerber et al. [22] to
compute W2 and W∞ distances.
We fixed the persistence thresh-
old τ = 4. It was empirically
found that beyond τ = 4 PD
did not change. The neighborhood
and combined-neighborhood radii
k and r are taken as

⌈
L
4

⌉
and

⌈
L
2

⌉
,

respectively, where L is the short-
est path distance between the two query nodes. This selection of k and r is adaptable
to the position of query nodes and ensures that there is a reasonable intersection of
their neighborhoods. Empirically we found that increasing this value did not change the
distance di’s but only increased the computation time. We implemented the baselines
AA, MW, CN, and PA in C++ and used author provided source code for node2vec and
struc2vec. For all the datasets, we removed 5% of edges making sure that the residual
graph remains connected. We then compare the performance of different methods to
recover the removed edges using information from the residual graph (Sec 4.2). All the
datasets and our source code are available for download4.

4.2 Results and Discussions

Traditionally, the problem of link prediction has been addressed as a ranking problem
where given a source node, a ranked list of target nodes is produced ordered by the like-
lihood of a potential link being formed between the source and the target nodes [25,20].
The baselines CN, AA, MW, and PA by definition, output a score between the source
and target node that can be used as the ranking function. The other two baselines –
N2V and S2V – learn continuous vector representations for each node in the graph. A
typical way to rank target nodes given a source node is to rank them based on their
distance from the source node [30]. Hence, for these methods, given a source node,
we produce a ranked list of all the other nodes in the graph ordered by the Euclidean
distance between the source and target node vectors. Given a pair of source and target
nodes our proposed approach produces eight different distance values (Algorithm 1)
capturing different topological properties. In order to produce a ranked list that com-
bines these different properties captured by the different distance functions, we use the

3 https://bitbucket.org/grey narn/hera/src/master/
4 https://github.com/sumit-research/persistent-homology-link-prediction
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Hits @ 10 Hits @ 50 Hits @ 100
CN AA MW PA S2V N2V PH CN AA MW PA S2V N2V PH CN AA MW PA S2V N2V PH

DC .190 .285 .142 .333 .142 .095 .000 .571 .666 .619 .571 .476 .476 .761 .714 .714 .714 1.00 .952 .952 1.00
ATC .100 .061 .053 .023 .038 .061 .077 .161 .076 .092 .130 .138 .238 .263 .161 .076 .092 .215 .184 .384 .372
Cora .180 .080 .074 .016 .028 .048 .332 .232 .080 .074 .038 .052 .118 .338 .252 .080 .074 .040 .072 .144 .338
Euroad .085 .085 .085 .014 .000 .100 .185 .085 .085 .085 .028 .114 .557 .600 .085 .085 .085 .071 .214 .742 .728
Figeyes .000 .006 .000 .000 .006 .012 .003 .012 .006 .018 .003 .018 .024 .027 .015 .006 .024 .015 .043 .043 .046
Yeast .212 .247 .159 .008 .017 .150 .183 .256 .292 .283 .079 .053 .292 .339 .256 .292 .292 .159 .106 .362 .385
Power .227 .209 .182 .000 .015 .246 .267 .255 .255 .255 .009 .039 .574 .595 .255 .255 .255 .030 .072 .680 .747
Arxiv .580 .587 .135 .015 .122 .480 .237 .849 .874 .526 .070 .219 .823 .723 .904 .918 .709 .114 .238 .897 .865
Twitter .055 .046 .047 .000 .003 .000 .003 .085 .053 .161 .002 .010 .001 .117 .087 .053 .236 .011 .015 .001 .276

Table 2. Performance of different methods on nine different datasets for the link prediction task.
Hits at ranks 10,50, and 100 are reported. For each dataset, the best method achieving highest hits
at a given rank is highlighted in bold.

rank product metric [13] to combine the ranked lists produced by individual distance
functions to obtain the final ranking of target nodes with respect to a given source node.
For a node i, the rank product is computed as rpi = (

∏m
j=1 rij)

1/m where rij is the
rank of node i in the jth ranked list.

Table 2 summarizes the results achieved by the six baselines and our proposed ap-
proach (PH). We report Hit Rate@N (forN = {10, 50, 100}), – the proportion of edges
for which the correct target node was ranked in the top N positions. Observe that our
approach outperforms the baselines in most cases, and is a close second in others. Also
note that while the methods based on immediate neighborhood achieve the best val-
ues for five out of nine datasets in terms of Hits@10, the methods that utilize global
network information generally outperform the local methods at higher ranks. This is
expected as the local methods work in a small, though highly relevant, search space of
nodes in the immediate neighborhood of query nodes. Thus, they are able to predict the
links for a few test cases that lie in this small search space. However, they fail for hard
test cases that lie outside this search space. For instance, in the euroad dataset, only 6
out of 70 test cases lie in the first order neighborhood of query nodes, resulting in poor
performance of local methods. On the other hand, the global methods (N2V, S2V, PH)
outperform at higher ranks as they are not limited to this small search space.

The robust performance achieved by the proposed approach, for all the datasets and
at different ranks, is commendable given that the proposed approach uses only eight
features (distance functions comparing the topological properties) that can be computed
with relative ease compared to computationally expensive learning of vector represen-
tations (as is the case with node2vec and struc2vec). Further, unlike the CN, AA, MW,
and PA baselines, that are also easier to compute, the proposed approach is built upon
the solid theoretical foundations and is not limited to the immediate neighborhood of
query nodes.

5 Conclusions and Future Work

We proposed an approach inspired from persistent homology to model link formation in
graphs and use it to predict missing links. Our approach achieved robust and stable per-
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formance across nine datasets, outperforming many frequently used baseline methods
despite being relatively simple and computationally less expensive. Given that the topo-
logical features succinctly capture information about shape and structure of the network
and can be computed without the need of extensive training, it will be worth exploring
how these features can be combined with other techniques for network analysis.
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