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ABSTRACT

Neural word embedding approaches, due to their ability to capture
semantic meanings of vocabulary terms, have recently gained atten-
tion of the information retrieval (IR) community and have shown
promising results in improving ad hoc retrieval performance. It
has been observed that these approaches are sensitive to various
choices made during the learning of word embeddings and their
usage, often leading to poor reproducibility. We study the effect
of varying following two parameters, viz., i) the term normaliza-
tion and ii) the choice of training collection, on ad hoc retrieval
performance with word2vec and fastText embeddings. We present
quantitative estimates of similarity of word vectors obtained under
different settings, and use embeddings based query expansion task
to understand the effects of these parameters on IR effectiveness.
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1 INTRODUCTION

Embedding vocabulary terms as dense, real valued vectors in a
low dimensional space has been shown to successfully encapsulate
semantic concepts associated with them [9]. Semantic relationships
captured by such word embeddings have been used to improve
the performance of various information retrieval tasks such as
document ranking [1, 5, 13], query reformulation [6, 14], relevance
feedback [3, 11], and end-to-end deep neural ranking models 7, 10].

In an embedded space of words, vectors for semantically related
terms lie in close proximity to each other and thus, the distance
between embedding vectors of two terms can be taken as a measure
of semantic relatedness between the terms. However, the choices
made during the training phase can result in different representa-
tive vectors and thus, the relative semantic relatedness between
terms is not preserved across different embedding spaces. Different
studies on the application of word embeddings to IR problems have
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made different choices for learning the word embeddings indicating
that there is a lack of established standards in this regard (which
collection to use, what pre-processing to apply, etc.). On one hand,
we have results that show that query-specific embeddings trained
on a subset of relevant document are superior over globally trained
embeddings [4], on the other hand, retrieval evaluations are con-
ducted using embeddings learnt over an external collection such
as Wikipedia [13]. The pre-TREC [8] IR community suffered from
the lack of a similar set of ‘best practices’ (e.g. stopword removal is
effective, too aggressive stemming often degrades retrieval quality).
The best practices gradually became established after a few years
of the TREC evaluation forum.

While efforts have been made to study the sensitivity of word em-
beddings to different model parameters (e.g. embedding dimensions,
context window size, skip-gram v/s cbow, etc.) and their impact
on ad hoc retrieval perfromance [15], little attention has been paid
to investigate the effects of the nature of the training collection
and term normalization used to learn the embedded vectors. In this
work, we focus on this aspect and study how the choices made with
respect to the underlying corpus and its pre-processing impact the
performance of downstream IR tasks. Since the embedding models
rely on context around the terms in training corpus, these choices
are crucial as they directly affect the contextual information around
each term and thus, can result in significantly different embedding
spaces (Section 2). While a large, generic external corpus may be
able to provide diverse contextual information to learn good em-
bedding representations, the target corpus (i.e., the collection on
which retrieval is to be executed) will be topically more relevant.
Likewise, normalizing terms (via stemming) can help aggregate the
contexts of different morphological forms together and thus, may
help learn better representations of these terms.

In order to study how the above choices effect the learned em-
beddings, we first describe two measures to compare embeddings
learned under different settings (Section 2). Next, we use a word
embedding-based query expansion method [11], and analyze the
impact of embedding variations on the retrieval performance of
this method on three different standard test collections. To study
the impact of collection choice, we compare retrieval performance
obtained using the embeddings trained on the target collection as
well as Wikipedia (a generic, external collection). To understand the
effect of term normalization, we report results using embeddings
learned from stemmed and unstemmed collections. In addition, we
also describe an intermediate composition method that can be used
to simulate the effect of stemming in cases where pre-trained word
vectors on unstemmed corpus are available and re-training may not
be feasible. We report all results with two different word embedding
models, (i) word2vec [9], one of the most commonly used word
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embedding model; and (ii) fastText, a word embedding model that
utilizes sub-word information for learning term representations.
We decided to study fastText as it performs implicit term normaliza-
tion by composing skipgram vectors of character n-grams [2]. We
compare the retrieval performance achieved using different word
vector representations learned under different settings and analyze
the reasons for these differences (Section 3) and conclude the paper
with directions for future work (Section 4).

2 EFFECTS OF EMBEDDING VARIATIONS

Measuring Similarity between Embeddings: Word vector em-
beddings are obtained through training on an underlying collection
of documents.More formally, in skipgram word2vec [9], word vec-
tors are obtained by sliding a context window pivoted at each word
position and maximizing the likelihood of generating the context
given the current word. Clearly, the context words surrounding the
target word can be very different for different collections resulting
in different representative vectors for the same word. Given two
word embedded spaces E; and Ez, we now formally describe ways
of measuring the similarity between them. By the property of the
objective function of the word2vec algorithm, two word vectors
x,y € R4 will have similar representations if the word y shares a
fair amount of context terms with the word x. Intuitively, two em-
bedded spaces will be similar if there is considerable overlap in the
set of neighborhood (top-k most similar) vectors around each word.
Formally, this can be measured by the average Jaccard similarity
between the top-K neighborhoods around each word in the two
embedded spaces, i.e.,
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where N]](E(x) denotes the neighborhood set of top-k most similar
vectors around word x in embedding E. The Jaccard similarity
does not take into account the relative ranks of the neighborhood
word vectors. A way to incorporate the rank information then
is to measure the average Spearman’s correlation coefficient p
(normalized within the range of [0, 1] to be consistent with Equation
1), between the top-K neighborhoods, as follows.
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For both metrics, a higher value indicates higher similarity between
two embedded spaces. In Section 3, we use the metrics of Equations
1 and 2 to measure the similarity between embeddings learned over
different collections and under different settings, and investigate
the correlation between the differences in embedding spaces with
differences in the performance of the downstream IR tasks. Note
that, the metrics are used to measure local topology of embedding
spaces to quantify how these differences may lead to differences in
effectiveness of downstream tasks, (in this paper - ranking).

Collection Choice - Target vs. External Collection: Some re-
ported studies on word embedding based approaches in IR use word
vectors trained on respective document collections to improve re-
trieval performance [3, 5], while there are others that have used
pre-trained word vectors [13]. Since the collection on which an
embedding method is trained can play an important role in learn-
ing the relatedness between terms, an obvious choice is to use the
underlying document collection of the retrieval system to learn the

word vectors. The word vectors trained on the target retrieval collec-
tion are likely to capture the underlying term semantics specific to
that collection, which can lead to improvements in IR effectiveness.
The alternative is to use pre-trained vectors on large, external doc-
ument collections that are often publicly available (e.g. word2vec,
fastText, provide such pre-trained vectors for different languages).
However, the term semantics learned with such generic collections,
e.g. Wikipedia, may not capture the relevant associations between
terms required to improve IR effectiveness on a particular search
collection, e.g. news-wire. This choice in the experimental setup
leads to our first research question, RQ-1: Does it help to use word
vectors trained over the target test collection instead of pre-trained
word vectors on external corpora, as the former may better capture
semantic relations of the target collection?

Choices for Term Normalization: Term normalization (e.g. stem-
ming) plays an important role in IR. An intuitive pre-processing
step is thus to apply stemming before training and directly learn
the word vectors for stemmed roots. During retrieval, the stemmed
query terms can then be exactly matched with the embedded word
vectors. However, after training word vectors on a document collec-
tion that is not pre-processed, or when working with pre-trained
word vectors trained on unprocessed collections, one needs to con-
sider how to match the embedded word vectors with the index
units of an IR collection (typically stemmed). We observed that
the reported studies usually lack clarity regarding this matching
step and this has led to differences in experimental setup when
implementing the same retrieval methodology by different research
studies. For instance, Ganguly et al. [5] used pre-processing before
training word vectors on the TREC Robust collection. However,
when reproducing their results for a baseline, such pre-processing
was not applied [13]. We propose an indexing unit composition
(TUC) method to resolve this normalization difference between the
index terms and the word vectors by stemming the trained word
vectors and composing (vector sum) the ones that yield identical
stems (representative of equivalence classes). This yields a single
vector representation for each equivalence class. Another alterna-
tive to account for term normalization differences could be to use
an alternative word embedding model, such as fastText [2], that im-
plicitly performs term normalization by utilizing character n-grams.
These experimental choices lead us to following research questions
- (RQ-2) what effect does embeddings trained on a stemmed collection
have on IR performance compared to an unstemmed collection?; and
(RQ-3) what effect does using approximations such as IUC or different
embedding model such as fastText have on IR perfromance?

3 EXPERIMENTS AND RESULTS
3.1 Settings

We use three different standard IR collections and learn word embed-
dings over them under different settings. Each embedding setting
corresponds to a permutation of the following three components.

e Training algorithm, which is one of word2vec or fasttext.

e Collection on which word vectors are trained, which is one of
‘target’ or ‘external’.

e Term normalization applied before/after learning word em-
beddings.

For the training collection option, ‘target’ indicates the collec-
tion on which retrieval is to be performed. We use TREC Robust,
WT10G and GOV2 collections for this purpose. The ‘external’



Collection Normalization Voc-size Name Collection Normalization Voc-size Name
Wikipedia ~ Unprocessed 1259578 Wk-U WT10G  Unprocessed 1532194 WT-U
Wikipedia ~ Composed (Post) 996471 Wk-C ~ WT10G Composed (Post) 794656 WT-C
Wikipedia ~ Stemmed (Pre) 1031792 Wk-S WT10G  Stemmed (Pre) 807778 WT-S
TREC Robust Unprocessed 266673 Rb-U  Gov2 Unprocessed 7834596 Gv-U
TREC Robust Composed (Post) 208760 Rb-C ~ Gov2 Composed (Post) 2592352 Gv-C
TREC Robust Stemmed (Pre) 206845 Rb-S Gov2 Stemmed (Pre) 2735818 Gv-S

Table 1: Names for different experiment settings.

option indicates that the embedding is learned on an external col-
lection. As an external collection, we use the entire Wikipedia dump
(November 2013) that was used in the Tweet contextualization track
of CLEF-2013. As term normalization options, we experimented
with three variations.

e No normalization of the words (denoted by ‘U’) during word
vector training.

o No pre-processing during word vector training, followed by a
post-processing step of composing (vector-sum) of the words that
yield identical stems, denoted by ‘C’.

o Pre-processing (Porter stemming) each word of a collection
before training word embedding, denoted by ‘S’.

Table 1 summarizes different collections and settings used for learn-
ing different embedding variants. We used the publicly available
implementations of word2vec and fastText and set the embedding
vector dimensions to 200 for all settings. In case of word2vec, the
context window size for the skipgram model was set to 10.
Query Expansion with Word Vectors: Next, to study the effect of
different embedding variants on retrieval performance, we employ
the embedded vectors for query expansion (QE) as proposed by
Roy et al. [12]. Specifically, given a query Q, the expanded query is
computed as Q" = Q Usep Ni(t), where N (t) denotes the set of
k-nearest neighbors of term ¢ as obtained from the embedded space.
The cosine-similarity values of these nearest neighbors are used
as their weights in Q’. We used Lucene for indexing and retrieval
and implementing the above model. After initial experimentation
on the model presented in [12], we set k = 120, i.e. add 120 most
similar terms to obtain the expanded query. Further, the value of
the Jelinek-Mercer smoothing parameter in the language model, A,
was set to 0.6. While there exists more advanced approaches that
utilize word vectors for improving retrieval performance in more
involved ways (e.g. [5, 11, 13]), the chosen approach employs word
vectors in a straight-forward manner (directly using the similarities
between words as weights for QE) making it easier to interpret and
analyze the observed differences in performance directly in terms
of the neighborhoods of the word vectors.

3.2 Results and Discussions

Table 2 reports the similarity metrics py and o} (Equations 1 and
2) between embeddings learned using different collections and set-
tings. Note how the embeddings learned from different collections
differ significantly as measured by the two parameters. For e.g.,
the o values between Wk-U and the three collections (Rb-UWT-u,
Gv-U) lie between 0.56 and 0.60 indicating that the semantic con-
cepts associated with the terms as captured by different collections
vary significantly. Further, even when comparing the embeddings
learnt over same document collection, we observe that normaliza-
tion choices lead to very different embedding spaces. For example,
word2vec embeddings for Rb-C and Rb-S have a o of 0.6057 indi-
cating that even for the same underlying corpus, different normal-
ization approaches can result in very different embedding spaces.
Similar observations can be made for other settings and together,
they lend significant weight to our initial hypothesis that embedding

spaces can differ appreciably with variations in term normalization,
stemming, etc. even if the underlying corpus remains same.

Next, we report the results of the word vector based QE approach
on the three test collections in Table 3. We observe from the table
that for word2vec embeddings, using the target corpus and some
form of normalization (either composition (C) or stemming (S)) for
learning embeddings, in general, helps in achieving significantly
better performance than using embeddings learned from an exter-
nal, un-normalized corpus. Further, note that from Table 2, the space
of embedded word vectors trained on the unstemmed version of
an external collection exhibits lower similarity to the target corpus
than that trained on a processed version (composed or stemmed).
For example, p(Wk-U, Rb-U) is lower than p(Wk-S, Rb-S) (same
applies for ¢ values). This indicates that the retrieval performance
obtained using embeddings learned from unprocessed collection
should be lower than that obtained with the processed collection.
This can be verified from Table 3, which shows that word2vec QE
MAP values for TREC-Rb with unprocessed Wikipedia (0.2280) is
lower than that of composed and stemmed Wikipedia (0.2477 and
0.2496 respectively).

An intriguing observation is that this trend of getting better IR
effectiveness with word2vec embeddings learned from normalized,
target collections does not held when fastText is used for learning
embeddings. As we observe from Table 3, IR perfromance is better
using fastText embeddings learned using un-normalized, external
collection. One exception here is the Gov2 collection, where higher
IR performance is achieved using target collection. We speculate
that the reason for this observed behavior could be the way em-
beddings are learned by fastText. Unlike word2vec that works at
individual word level, fastText first learns the embedded representa-
tions of character n-grams before combining them to obtain vectors
for words. Therefore, it performs term normalization in an implicit
manner and applying stemming before running fastText has the ef-
fect of reducing the number of character n-grams and altering their
contexts, potentially leading to noisier representations of words.

Finally, for both word2vec and fastText, the post-processing
step of composing unprocessed (whole) words into indexing units
(stems) yields results that lie between the two extremes of learning
the embeddings on unprocessed and stemmed collections. Given
that in many cases training embedings on target corpus may not
be feasible due to time and resource constrains, our experiments
suggests that in such cases, it may be a better trade-off to use easily
available pre-trained word vectors trained on large unprocessed
collections (such as Google-News) and applying compositions such
as proposed in this paper (IUC) to make use of advantages offered
by term-normalization.

4 CONCLUSIONS AND FUTURE WORK

We investigated the impact of term normalization and collection
choices in learning word embeddings and their effect on ad hoc
retrieval performance. We proposed two metrics for measuring
the similarities between the embedded spaces of word vectors ob-
tained under different settings. Using embeddings trained over
different collections and under different settings for the query ex-
pansion task, we found that: a) small differences in settings can
lead to considerable differences in the embedded spaces of word
vectors; b) these differences can lead to considerable variations in
the effectiveness of downstream task of ad hoc IR, c) there is no
‘clear winner’ among the term normalization alternatives, since



Word2vec | Rb-C Rb-S Wk-C WKk-S
Rb-C 0.6057 0.5773 0.5757
Word2vec Rb-U WT-U Gv-U 0.1396 0.0827 0.0794
0.5828 0.5643 0.6040 0.5881 0.5997
WkU | 0011 0.0600 0.1319 Rb-$ 0.1085 0.1282
0.7022
Wk-C 0.3161
‘Word2vec | WT-C WT-S ‘Wk-C ‘Wk-S Word2vec | Gv-C Gv-S Wk-C WKk-S
0.8315 0.5919 0.6063 0.7412 0.5903 0.6101
WT-C 0.4853 0.1249 0.1521 Gv-C 0.3388 0.1237 0.1451
0.5993 0.6180 0.5804 0.5927
WI-§ 0.1355 0.1694 Gv-§ 0.0970 0.1190
0.7002 0.6989
Wk-C 0.3170 Wk-C 0.3094
FastText | Rb-C Rb-S Wk-C WKk-S
Rb-C 0.7659 0.5994 0.5837
FastText Rb-U WT-U Gv-U 0.4002 0.1182 0.0911
0.5899 0.6286 0.5744 0.5912 0.5940
WU | 1205 0.1889 0.1787 Rb-$ 0.1054 0.1071
0.7532
Wk-C 0.3924
FastText | WT-C WT-S Wk-C ‘WKk-S FastText | Gv-C Gv-S Wk-C WKk-S
0.5595 0.5611 0.5539 0.7484 0.5484 0.6572
WT-C 0.0669 0.0455 0.0315 Gv-C 0.3086 0.0349 0.2304
0.5914 0.6083 0.5832 0.5505
WT-§ 0.1247 0.1549 Gv-§ 0.0431 0.0380
0.7339 0.7411
Wk-C 0.3714 Wk-C 0.3892

Table 2: o; and p; (below and above diagonal of each cell, respectively) values between different embedding spaces. A value
of k = 120 (identical to #QE terms) is used to compute the similarities. Since it is not possible to compute the inter-embedding
similarities between an unstemmed space and a stemmed one without the application of IUC, some comparisons do not exist

in the table, e.g.between the pair WT-C and WT-U

Settings MAP
Method Domain Normalization Rb WT10G Gov2
No QE 0.2355 0.1472 0.2072
Word2vec External  Unprocessed (U)  0.2280 0.1562* 0.2326*T
Word2vec  External ~ Composed (C) 0.2477°V 0.1610*Y 0.2341*
Word2vec  External  Stemmed (S) 0.2496*UC 0.1632*V 0.2363*UC
Word2vec  Target Unprocessed (U)  0.2272* 0.1565" 0.2139*

Composed (C) 0.2486*V 0.1712*°VE  0.2299*U
Stemmed (S) 0.2520*UCE  .1692*U 0.2313*Y

Word2vec  Target
Word2vec  Target

FastText External ~ Unprocessed (U)  0.2502*CST  0.1655*CST  0.2321*°

FastText External ~ Composed (C) 0.2445* 0.1570* 0.2292"
FastText External ~ Stemmed (S) 0.2432* 0.1553* 0.2260"
FastText  Target Unprocessed (U)  0.2452" 0.1537* 0.2489*5F
FastText  Target Composed (C) 0.2473*V 0.1554* 0.2451*F
FastText Target Stemmed (S) 0.2463* 0.1533* 0.2436*F

Table 3: Embedding based QE [12] effectiveness with vari-
ous settings on standard IR collections. A ‘+’ indicates sig-
nificance (paired t-test with 95% confidence) w.r.t ‘No-QE’; U,
C and S indicate significance w.r.t Unprocessed, Composed
and Stemmed, respectively. For any method-normalization
pair, E and T respectively indicates significant differences be-
tween the External and Target collections.

we observed that word2vec generally works well on a stemmed
collection, whereas fastText on an unprocessed collection, and this
can be attributed to the inherent characteristics of the embedding
algorithms; since fastText is seen to perform better for other tasks
when trained on unprocessed collection [2], this is the first effort to
validate the claim for ad-hoc IR; d) our proposed post-processing
term normalization by composing vectors of words yielding the
same stem produces more stable results (lying between the two
extremes of unprocessed and stemmed) across the different word
embedding algorithms; e) composition based post term normaliza-
tion can be a good choice when working with pre-trained word
vectors trained with word2vec, since it outperforms the results with
unprocessed word vectors on three standard IR collections; f) no
‘clear winner’ among the word vector training algorithms, since

the results produced by word2vec are slightly better than those
obtained with fastText on TREC-Rb and WT10G, whereas fastText
word vectors produces better results on Gov2. In future, we plan
to solidify these observations to offer general best practices for
a range of different neural IR methods (e.g. DRRM[7]) as well as
experiment using large datasets (e.g. Common Crawl).
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