
A Scalable Approach For Performing Proximal Search For
Verbose Patent Search Queries

Sumit Bhatia
Computer Science and Engineering,

Pennsylvania State University
University Park, PA 16802
sumit@cse.psu.edu

Bin He, Qi He, Scott Spangler
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95050

{binhe,heq,spangles}@us.ibm.com

ABSTRACT

Even though queries received by traditional information re-
trieval systems are quite short, there are many application
scenarios where long natural language queries are more ef-
fective. Further, incorporating term position information
can help improve results of long queries. However, the tech-
niques for incorporating term position information have been
developed for terse queries and hence, can not be directly
applied to long queries. Though there exist some methods
for performing proximal search for long queries, they are not
scalable due to long query response times. We describe an
intuitive and simple, yet effective technique that implicitly
incorporates term position information for long queries in
a scalable manner. Our proposed approach achieves more
than 700% faster query response times while maintaining
the quality of retrieved results when compared with a state-
of-the-art method for performing proximal search for very
long queries.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval – Retrieval Models, Search Process

General Terms

Algorithms, Experimentation

Keywords

Verbose queries, long queries, term proximity, proximal search,
prior art search, patent search.

1. INTRODUCTION
Majority of information retrieval research focuses on key-

word queries where the user represents her information need
in form of a few keywords that representing the key underly-
ing concept. Likewise, most of the queries received by com-
mercial web search engines are very short – 2-3 keywords on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

an average. However, there are many important use cases
where the user’s information need can not be sufficiently de-
scribed by a few keywords. Longer queries can better express
complex and specific information needs [10] and are com-
mon in enterprise search systems [5] and search-in-context
systems [1]. Further, in many scenarios natural language
queries are preferred over keyword queries such as in com-
munity question answering services [14]. In prior art search
or patent retrieval, it is common to use abstracts of patents
as queries to search for similar/related prior patents [12].

Surprisingly, given the vast applications of long queries,
modern search engines usually perform poorly with long
queries [7]. Further, a majority of commercial web search en-
gines do not provide support for very long, verbose queries.
For example, Google has an upper limit of 32 keywords for a
search query. One major reason for limiting the size of input
queries to the search engine is that the time taken for search
and retrieval operations increases with the number of words
in the input query. Hence, most of the current techniques for
handling verbose queries first transform the long query into a
shorter query by either extracting key concept phrases from
the query [2] or by removing less important terms from the
query [7]. This query transformation step increases the time
required to retrieve results for the query. Further, many of
these approaches require some kind of training data to learn
the importance of different terms to distinguish key terms
from non-key terms. Such data may not always be available
for all the applications and thus, preventing the use of such
techniques.

In addition to long response times for verbose queries, the
results produced by the present search systems are often not
satisfactory and contain a very large number of false posi-
tives (i.e., very low precision) for longer queries [12]. The
major reason for such a low precision is again the length of
input queries. Any document that contains at least one of
the query words is a potential match for the query and since
the input query is very long and contains a large number
of keywords, the number of matching potential documents
is very large. Even though commonly used document rank-
ing functions help alleviate this problem to some extent by
assigning more weight to more important terms and assign-
ing higher scores to documents containing multiple query
terms, the results are still far from being acceptable. This
is because the most commonly used ranking functions do
not take into account the relative position of query terms
and their occurrence in the document. Utilizing term prox-
imity information can help improve retrieval performance
in such scenarios [12, 13]. However, most of the current

works on incorporating term proximity information in re-
trieval models have focused on short keyword queries [13, 3,
6] and are not suitable for use with longer queries. More-
over, these involve additional computation to determine the
proximity information and coupled with the already long
processing time for verbose queries, make the overall search
process very slow. In this paper, we describe a technique for
incorporating term proximity information for long queries
in a scalable manner. Our approach does not involve a
query transformation step and also does not require explicit
term position computations at query time. We split the
documents and input queries into simpler and smaller sub-
units so that the query length reduction step (for handling
long queries) and term position computation (for proxim-
ity information) are implicit in the retrieval process. For
experiments, we chose patent retrieval as the application
domain given the very long input queries that are usually
used for patent search (abstracts of patents). We compare
our proposed approach with a state-of-the-art approach for
performing proximal search for long queries and we achieve
more than 700% faster query response times while maintain-
ing, and in many cases, improving the quality of retrieved
results.

2. PROPOSED APPROACH
The major purpose of proximal search operation in docu-

ment retrieval is to ensure that documents containing query
terms in close proximity to each other are assigned a higher
score. This becomes more important for longer documents.
The current methods for proximal search utilize the posi-
tion information of various terms in the document to assign
higher scores to documents that contain query terms in close
proximity to each other. The position information for doc-
ument terms can be pre-computed at index time and dis-
tances between query terms present in the document can be
computed at run time. For longer queries, these computa-
tions can significantly increase the system’s response time.
Hence, in order to improve query response time, we propose
a method that eliminates these distance computations. Fig-
ure 1 describes the intuition behind our approach. At index
time, we segment the documents in the corpus into much
smaller units called snippets. For the proposed method, a
snippet consists of three consecutive sentences from the orig-
inal document. Even though we generated snippets that
were 3 sentences long, number of sentences in a snippet can
be varied depending upon the application. Longer snippets
will result in smaller number of overall “documents” to in-
dex but a weak proximal search operator whereas shorter
snippets favor strong proximity operators at the expense of
large number of documents in the index. As suggested by
Spangler et al. [11], a snippet length of three sentences of-
fers a fine balance between the two considerations. Thus,
a given document is decomposed into a number of snippets
that are much shorter in length and each snippet is now
treated as a separate document and is indexed by the indexer
of the search system. We assign identifiers to each snippet
so that all the snippets generated from a given document
can be identified. Note that by decomposing a document
into snippets and indexing these individual snippets intro-
duces an implicit proximal search operator. On receiving a
user query, the search system finds snippets containing one
or more query terms. These snippets are then ranked us-
ing a ranking function that usually assigns higher scores to

Query

Query match by sliding window

Document

Document segments (snippets)

Query

Query match to individual
snippets results combined

Figure 1: Intuition behind proposed approach
for implicitly performing proximal search for long
queries. For proximal search, query is matched to
different regions of the document in a sliding window

fashion. We simulate the same effect by splitting the
document into shorter sub-documents or snippets.

snippets that contain multiple query terms. In this we use
the standard query likelihood language model as our ranking
function. Thus snippets that contain many query terms are
favored over snippets that contain only a few query terms.
Note that since each snippet is actually a small continuous
segment of the original document text, a snippet contain-
ing multiple query term implies that in the original doc-
ument from which the snippet was generated query terms
are present in close proximity to each other. Thus, we have
obtained the term proximity information without having to
compute the distances between query terms present in the
document at query time.

The method described above produces a ranked list of
snippets as output. However, the users are interested in
obtaining relevant “full documents” rather than snippets.
Hence, in order to obtain a ranked list of documents, for each
document we add the scores of all the snippets generated
by a given document and assign the resulting score to the
corresponding document. Thus, documents having multiple
matching snippets for a given query are assigned a higher
score. We also note that the snippet scores can be merged
into document scores in various different ways also depend-
ing upon the requirement of the application. The above
described method can be extended to accommodate very
long queries by decomposing a long query into smaller sub-
queries. For example, if the input query is a paragraph of
text, the paragraph can be decomposed into its constituent
sentences and each sentence can then be used as a query.
The results of all the sub-queries can then be merged to-
gether to create a final ranked list for the paragraph query.
The steps involved in our method are summarized below:

1. At index time, split all the documents into smaller
sub-units (snippets) and index all the snippets.

2. Split the input long query into its constituent sen-
tences.

3. Split the input query into its constituent sentences1.
Use each query sentence as an individual query and
and select the top K (we use N = 500) snippets based
on a relevance function (we use standard query likeli-
hood language model).

4. As described above, transform the snippet results into
document results for each sentence sub-query by adding
scores of all the snippets belonging to the document.

5. Sum scores for each document for each sentence and
sort by the final scores. The top N documents can
then be shown to the user in decreasing order of their
scores.

3. EXPERIMENTAL PROTOCOL

3.1 Data Description

3.1.1 Corpus

We use the publicly available Marec 400.000 patent collec-
tion that was used in AsPire’10 workshop2 collocated with
ECIR 2010. The dataset consists of 400,000 randomly se-
lected patent documents, with 100,000 patents belonging to
EPO (European Patent Office), USPTO (US Patent Office),
JPO (Japanese Patent Office) and WIPO (World Intellec-
tual Property Organization), respectively. For our exper-
iments, we only selected patents belonging to the USPTO
set as the patents belonging to other patent offices were writ-
ten in languages other than English. Thus the final dataset
consists of 100,000 patent documents.

3.1.2 Queries and Relevance Judgments

For our experiments, we created queries and relevance
judgments using an approach common in patent retrieval
community that has been followed in NTCIR [4] and TREC
Chemical track [8]. We select 50 patents from the dataset
having the most number of in-network citations. The ab-
stract of these patents were used as the input query for dif-
ferent retrieval algorithms with an average query length of
61.23 words and the patents cited by query patent present
in the dataset constitute the set of relevant documents.

3.2 Baseline Approach
We compare our proposed approach with a state-of-the-art

method for exploratory patent analysis as offered by IBM’s
SIMPLE platform [12]. The search algorithm as used in the
SIMPLE platform first breaks the input long query into mul-
tiple shorter sub-queries by extracting multiple “keywords”
and “phrases” from the original query. It then uses the
shorter ”sub-queries” with appropriate proximity operators
and constructs the final result by combining the results of
each individual sub-query. Further, the final ranked list of
result is determined based on two factors – (i) documents
returned by very specific sub-queries should be assigned a
higher weight and (ii) documents that are returned by many

1For extreme cases where the query is a very long sentence,
it could be split up into sub-queries of equal length (say 10
words each)
2http://www.ir-facility.org/aspire-10

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6
x 10

5

Query Length (number of terms)

R
e
t
r
i
e
v
a
l

T
i
m
e

(
m
s
)

Snippet

Simple

Figure 2: Scatter plot showing query retrieval times
with query length (number of words).

different sub-queries are assigned a higher weight. We refer
the interested reader to the original paper [12] for further
details. We also note that even though there exists meth-
ods that tackle the problem of proximal search and verbose
queries in isolation, comparing our proposed approach with
such techniques is not a fair comparison as our approach tar-
gets specific scenarios where it is required to perform prox-
imal search for very long queries.

3.3 Evaluation Metrics
As reported by Magdy and Jones [9], precision oriented

metrics such as MAP are not well suited for patent retrieval
and can be misleading given the different requirements of
patent retrieval task where recall is more important and the
user is willing to examine many more documents as com-
pared to a traditional information retrieval setting. Hence,
for evaluation we use following recall oriented metrics.

1. Patent Retrieval Evaluation Score (PRES): This
metric, as proposed by Magdy and Jones [9], evaluates
a retrieval algorithm from a recall oriented perspective
and takes into account expected search effort from the
user. A higher value of the metric indicates that the
retrieval algorithm was able to achieve higher recall
values at earlier ranks as compared to an algorithm
with lower PRES score. Mathematically, PRES for a
query Q is computed as:

PRES = 1−

∑
ri

n
−

n+ 1

2
Nmax

(1)

where, ri is the rank at which the ith relevant doc-
ument is retrieved, n is the total number of relevant
documents in the corpus for Q, and Nmax is the max-
imum number of documents to be examined by the
user.

2. Average Recalls: We also report recall values at
ranks 10, 20, 30, 50, 75 and 100 for different search
methods.

All experiments were performed on a machine with four
GB of RAM, intel Core-2 quad CPU with 4 cores (2.40
GHz each) and running Ubuntu 10.4 operating system with
2.6.32-41 Linux kernel. Implemetation was done in Java and
we used Indri 3 as the base retrieval toolkit.

3lemurproject.org

http://www.ir-facility.org/aspire-10

Recall @ Rank

10 20 30 50 75 100

Simple 0.055 0.096 0.129 0.153 0.171 0.184
Snippet 0.064 0.098 0.120 0.150 0.180 0.195

PRES @ Rank

10 20 30 50 75 100

Simple 0.053 0.074 0.090 0.113 0.132 0.144
Snippet 0.064 0.080 0.091 0.112 0.130 0.142

Table 1: Recall and PRES scores at various ranks
for the two methods.

4. RESULTS AND DISCUSSIONS

4.1 Time Performance
For each of the two retrieval methods, we ran each query

five times and computed the average time taken by each
method. This was repeated for all the 50 queries in the
dataset giving us average runtime for each method. On
an average, the baseline search algorithm (SIMPLE) took
210.854 seconds per query whereas our proposed method
took an average of 25.215 seconds – an improvement of more
than 700%. Further, Figure 2 shows the average time taken
by two methods for each individual query. The figure shows
a scatter plot where x-axis represents query length (in num-
ber of words) and y-axis represents time. Thus, a point (x, y)
on the plot indicates that for a query consisting of x words,
the response time is y milliseconds. The dotted lines in the
plot represent a least square fit for the two methods – blue
for proposed method and red for the baseline method. We
note from the figure that our proposed method consistently
achieves much lower query response times as compared to
the baseline method. Further, the slope of the line repre-
senting the baseline approach is much steeper (22536 ms
per query word) when compared to the slope for the pro-
posed method (465.74 ms per query word). This indicates
that our proposed approach is highly scalable as the rate
at which the query response times increases with increasing
query length is much lower than the baseline approach.

4.2 Retrieval Quality
Table 1 reports PRES and recall values at different ranks

for the two methods. We note from the Table that when
compared to the baseline approach, our proposed method
achieves higher recall at all the ranks except at rank 50. In
terms of PRES, even though the PRES values at higher
ranks are slightly lower than the baseline method, both
PRES and recall at ranks 10, 20 and 30 are higher than
the baseline method. This behavior is desirable as it indi-
cates that a larger number of relevant documents are being
shown to the user at earlier ranks.

5. CONCLUSIONS AND FUTUREWORK
In this work we described a retrieval method to perform

proximal search for very long patent queries in a scalable
manner. Our proposed approach achieves 700% faster query
response times as compared to a state-of-the-art method
while maintaining, and in many cases, improving the quality

of returned search results. Even though the problem is mo-
tivated from prior art search, the techniques proposed are
general enough and can be easily applied to perform proxi-
mal search in other domains with very long input queries. In
this work, the results for individual sub-queries are combined
by using a simple addition function. Our future work will
focus on exploring various possible techniques for combining
results of sub-queries for improving retrieval performance.

6. REFERENCES
[1] Placing search in context: the concept revisited. ACM

Trans. Inf. Syst., 20(1):116–131, Jan. 2002.
[2] M. Bendersky and W. B. Croft. Discovering key concepts in

verbose queries. In Proceedings of the 31st annual
international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’08, pages
491–498, 2008.

[3] S. Büttcher, C. L. A. Clarke, and B. Lushman. Term
proximity scoring for ad-hoc retrieval on very large text
collections. In Proceedings of the 29th annual international
ACM SIGIR conference on Research and development in
information retrieval, SIGIR ’06, pages 621–622, 2006.

[4] A. Fujii, M. Iwayama, and N. Kando. Overview of the
patent retrieval task at the ntcir-6 workshop. In NTCIR-6
Workshop, 2007.

[5] D. Hawking. Challenges in enterprise search. In Proceedings
of the 15th Australasian database conference - Volume 27,
ADC ’04, pages 15–24, 2004.

[6] D. Hawking and P. Thistlewaite. Proximity operators - so
near and yet so far. In Proceedings of the Fourth Text
REtrieval Conference (TREC-4), pages 131–143, 1995.

[7] S. Huston and W. B. Croft. Evaluating verbose query
processing techniques. In Proceedings of the 33rd
international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’10, pages
291–298, 2010.

[8] M. Lupu, F. Piroi, X. Huang, J. Zhu, and J. Tait. Overview
of the trec 2009 chemical ir track. In TREC-18, 2009.

[9] W. Magdy and G. J. Jones. PRES: a score metric for
evaluating recall-oriented information retrieval applications.
In Proceedings of the 33rd international ACM SIGIR
conference on Research and development in information
retrieval, SIGIR ’10, pages 611–618, 2010.

[10] N. Phan, P. Bailey, and R. Wilkinson. Understanding the
relationship of information need specificity to search query
length. In Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in
information retrieval, SIGIR ’07, pages 709–710, 2007.

[11] S. Spangler, J. T. Kreulen, and J. Lessler. Generating and
browsing multiple taxonomies over a document collection.
Journal of Management Information Systems, 19(4):pp.
191–212, 2003.

[12] S. Spangler, C. Ying, J. Kreulen, S. Boyer, T. Griffin,
A. Alba, L. Kato, A. Lelescu, and S. Yan. Exploratory
analytics on patent data sets using the simple platform.
World Patent Information, 33(4):328 – 339, 2011.

[13] T. Tao and C. Zhai. An exploration of proximity measures
in information retrieval. In Proceedings of the 30th annual
international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’07, pages
295–302, 2007.

[14] X. Xue, J. Jeon, and W. B. Croft. Retrieval models for
question and answer archives. In Proceedings of the 31st
annual international ACM SIGIR conference on Research
and development in information retrieval, SIGIR ’08, pages
475–482, 2008.

	Introduction
	Proposed Approach
	Experimental Protocol
	Data Description
	Corpus
	Queries and Relevance Judgments

	Baseline Approach
	Evaluation Metrics

	Results and Discussions
	Time Performance
	Retrieval Quality

	Conclusions and Future Work
	References

