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Abstract. Time is a fundamental concept in data processing. The growth
of social media (SM) data and the rise of the Internet of Things (IoT)
underscores the necessity for studying temporal data on the Web. How-
ever, accessing realistic temporal data poses significant challenges across
data collection, knowledge representation, and real-time provisioning,
with no comprehensive solution available yet. To tackle these challenges,
we introduce GenACT, a novel data generator rooted in the dynam-
ics of Academic Conference Tweets (ACT), which serves as an ideal
domain for eliciting application scenarios spanning temporality, dynam-
icity, and timeliness. The foundation of GenACT is a domain-specific
ontology crafted to conceptualize tweets around an Academic Confer-
ence Event (ACE) realistically. The ACE ontology is available in all
four OWL 2 profiles. Additionally, RDF instantiation allows for real-time
simulation of ongoing academic discussions on Twitter. GenACT stands
out for its ability to configure different data segments using SPARQL-
based partitioning strategies. This versatility makes it adaptable to var-
ious analytical tasks, enabling researchers to focus on specific aspects
of the data for their studies. GenACT is designed to seamlessly provide
temporal and static data in a streaming format, tailored specifically for
applications in studying knowledge graph evolution, temporal reason-
ing, and stream reasoning. The ontology, code, and documentation are
available under the Apache 2.0 License at https://github.com/kracr/
temporal-data-generator.

Keywords: Data Generation· Stream Reasoning · Knowledge Repre-
sentation

1 Introduction

The domain of knowledge representation and reasoning has evolved significantly
with the rise of knowledge-intensive temporal data, largely influenced by social
media and the Internet of Things, which resemble dynamic knowledge graphs

https://github.com/kracr/temporal-data-generator
https://github.com/kracr/temporal-data-generator
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(KGs) due to their structure and the ever-evolving nature of data. Although KGs
are becoming more prevalent, there remains a lack of exploration in analyzing
and managing their evolution. In their recent survey, Polleres et al. [26] encour-
aged a closer look at KG evolution. However, to study KG evolution effectively,
we need more control over the construction and maintenance of the KGs. Even
when KG changelogs and versions are available, e.g., in the case of Wikidata 6

or DBpedia [21], the existing real-world datasets fall short in three crucial as-
pects required to capture real-world activities in data [26]: (a) temporality, i.e.,
the ability of the KG to capture the order and duration of the events, is often
incomplete or enforced in RDF via reification; (b) dynamicity, i.e., the ability of
the KG to capture progressive variation, is usually implemented using versioning
and is not well documented; (c) timeliness, i.e., the ability of the KG to stay
up to date, is neglected, especially when the velocity of change meets streaming
scenarios [7].

While the previously discussed aspects are crucial, KGs must also exhibit ad-
ditional characteristics to capture the dynamic and complex nature of real-world
activities accurately: (a) diverse graph patterns: real-world data rarely follows
a single, rigid structure, and KGs that support a variety of graph patterns can
better represent the intricate relationships between entities. (b) temporal granu-
larity : real-world events often consist of subevents occurring over different time-
frames, and KGs should accommodate these varying timescales. This enables
the modeling and analysis of relationships with different complexities. (c) scala-
bility and data fluctuations: information density can fluctuate with sudden data
bursts during significant events, and KGs that incorporate these fluctuations
accurately represent diverse data volumes. (d) segmented by attributes: different
entities possess unique characteristics, and KGs segmented by attributes can
capture these variations, allowing for more nuanced analysis and exploration of
specific entity types. KGs endowed with these characteristics offer a significant
advantage: the ability to tailor data to simulate several application scenarios.

Unfortunately, real-world KGs with these comprehensive capabilities are cur-
rently rare. Incorporating this flexibility is crucial for KGs to become more suit-
able for applications like temporal web data generation and analysis, where cap-
turing the dynamic intricacies of real-world activities is paramount. Synthetic
data generation [3] offers the flexibility to explore all these features, possibly
enhancing evaluation accuracy and enabling realistic simulation of dynamic KG
evolution. However, existing works in the area are limited in scope (cf. Section 6).

To address these gaps, this work introduces GenACT, a synthetic data gen-
erator for the Web. GenACT data are modeled after realistic data from a
knowledge-intensive yet interpretable domain, i.e., Academic Conference Tweets
(ACT). From a comprehensive study, we found that ACT is the ideal domain
to elicit application scenarios that span temporality, dynamicity, and timeliness.
We built an OWL 2 [13] ontology based on tweets related to academic confer-
ences. This ontology is available in four flavors corresponding to each of the four
OWL 2 profiles (EL, QL, RL, DL) [13]. This extends the utility of GenACT for

6https://www.wikidata.org/wiki/Wikidata:Main_Page
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applications modeled using any of these profiles. Furthermore, GenACT gener-
ates data that can be partitioned into segments based on specific graph patterns
and attributes (e.g., conferences, users). These partitions exhibit varying data
peaks and intricate relationships, allowing researchers and developers to conduct
insightful analyses.
Outline. Section 2, first elaborates on the rationale behind selecting this do-
main, domain analysis, and different application scenarios that illustrate the
practical applications of GenACT. Section 3 discusses the knowledge represen-
tation efforts, i.e., an overview of the construction of the ontologies involved.
The data generation process is discussed in Section 4, while Section 5 engages
in a discussion regarding the generated data, evaluating its effectiveness on two
reasoners, CSparql2 7 and RDFox [22], thereby demonstrating the potential of
the generated data. Additionally, we address limitations and outline potential
avenues for future development. Section 6 provides a comprehensive review of
related work, followed by conclusions in Section 7.

2 Academic Conference Tweets (ACT)

Indeed, drawing upon the principles outlined in [20], a critical step in the devel-
opment of ontologies is defining a well-scoped domain. The domain needs rich
temporality (timestamps, durations, versions) to model evolving knowledge. It
should also be dynamic and timely, with continuous information flow and real-
time interactions. Ideally, the domain should resonate with the target research
community, be representable using ontological modeling frameworks like OWL
2, and allow simulated data generation. Social media platforms like Twitter or
Reddit provide an excellent source for such temporally rich data due to their
continuous streams of user-generated content, which capture evolving trends,
events, and discussions in real-time. However, collecting real data from these

7https://github.com/streamreasoning/csparql2

Fig. 1: Conference Lifecycle: dots represent Absolute Events. Legend: [E]arly
[A] announcements, [R]review [N]otifications, or the currently [O]ongoing
[C]conference. Colours and strokes differentiate the conferences, running simul-
taneously yet in different phases, animating the temporal landscape.

https://github.com/streamreasoning/csparql2
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platforms has become increasingly challenging due to their stringent terms of
service, limited API access, and the high costs associated with data extraction.
Beyond the technical hurdles, there are also significant legal and ethical barriers,
such as data privacy regulations which impose strict restrictions on how data
can be collected and used. These factors make it difficult to obtain large-scale,
real-world datasets from these sources.

Twitter stood out as an ideal data source for our synthetic data generation
approach due to its event-driven nature and medium to high rate of data genera-
tion [29,24]. Within Twitter, we specifically target tweets surrounding academic
conferences. This focus offers two advantages: first, ACT inherently captures the
detailed sequence of events (rich temporality) surrounding the conference, which
is crucial for knowledge modeling. Second, event-related tweets exhibit extended
engagement (Figure 1), aligning with our modeling goals.

Scenario Temporality Dynamicity Timeliness

1 Trending Topics Across Conferences ✓ ✗ ✓

Keeps users posted on topics trending across conferences

2 Active Research Groups ✓ ✓ ✗

Monitor key players and their collaborators in given fields

3 Publication Activities of Organizations ✓ ✓ ✗

Analyse researchers’ interdisciplinary work

4 Conference Match by Research Interests ✗ ✓ ✗

Identifies conferences that match users’ research interests

5 Interdisciplinary Authors ✓ ✓ ✗

Identify potential interdisciplinary collaborations

6 Session Popularity ✓ ✓ ✗

Identify the most popular topics and speakers

7 Global Research Focus ✓ ✓ ✓

Identifies countries most active in a given research field

8 Funding Organizations ✗ ✓ ✗

Identifies organizations financing researchers

9 Networking Opportunities ✓ ✓ ✗

Identifies researchers interested in the same given areas

10 Collaboration Networks ✓ ✓ ✗
Monitors academic collaboration networks to understand
research dynamics

11 Non-academic Collaborators ✗ ✓ ✗
Monitors industry-academia relations to highlight knowl-
edge transfer

12 Geographical Distribution ✓ ✓ ✗

Identifies active countries in given research fields

13 Platform Impact ✓ ✗ ✓

Analyse conference trends on various platforms

Table 1: Scenarios for Competency Questions.
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The ACT domain accurately captures the “when” (temporality), “what is
new” (dynamicity), and “staying informed” (timeliness) aspects crucial for rep-
resenting real-world activities. Temporality guarantees the precise sequencing
and duration of events, enabling queries like “What happened before the call
for papers?” It accurately represents the chronological order of events, such
as announcements, submissions, and notifications. Furthermore, ACT incorpo-
rates simple ordering, e.g. order (conference announcements precede call for
papers), and all forms of temporality [26]: timestamped event data (Tweets),
versioned data (conference series and user bios updates), and intervals (con-
ference duration). Dynamicity ensures real-time adaptation to new tweets, up-
dates, and schedule changes, providing users with the most current information.
ACT encompasses continuous information flow (real-time schedule updates), in-
teractions (social media engagement), and progressive data changes (user pro-
files and conference details). Timeliness includes prompt notifications and re-
minders, enabling effective user participation in the conference process. ACT
involves prompt notifications (session starts and submission deadlines), timely
data updates (new information reflection), and responsive adjustments (adaptive
scheduling). Moreover, ACT offers a rich context to explore and model different
language constructs from the OWL 2 profile (discussed in Section 3), facilitating
diverse reasoning challenges, which are reflected in the scenarios provided in the
next section that can be used as CQs.

Furthermore, the domain’s accessibility and familiarity within the academic
community make it highly suitable for research and analytical purposes. More-
over, since Twitter data is not openly accessible, enabling data generation is valu-
able for stimulating research, underscoring its relevance and impact in knowledge
representation and reasoning domains.

Competency Questions (CQs). We explored the domain’s suitability in sim-
ulating real-world temporal applications by formulating scenarios that can be
used as CQs [30], listed in Table 1. Due to space constraints, these scenarios
are presented concisely, yet each entry effectively captures the essence of its cor-
responding query. The queries corresponding to the competency questions can
be found in our GitHub repository8. The table also further emphasizes opportu-
nities for modeling temporality, dynamicity, and timeliness, thus addressing the
dynamic nature of academic research.

The following conceptualization is required to understand the ontology mod-
eling efforts presented later. In particular, we introduce the notion of Temporal
and Continuous Queries for the unfamiliar reader that are needed to address
notions such as temporality, dynamicity, and timeliness that push the envelope
of the standard Semantic Web stack [13]. We use the CQ 3: “Monitoring Publi-
cation Activities of Organizations” as an example.

Definition 1. Temporal queries offer native support for retrieving and manipu-
lating time-referenced data, such as timestamps, durations, and time intervals..

8https://github.com/kracr/temporal-data-generator
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Listing 1.1 shows an example query implemented using a temporal extension
of SPARQL (T-SPARQL). The query execution leverages the INTERSECT clause
to exploit data temporality in RDF, in this case, the year 2023.

Definition 2. A continuous query is a query whose evaluation is repeated at
regular time intervals and whose results are the union of results [6].

Listing 1.2 shows an example query implemented using a streaming extension
of SPARQL (RSP-QL). The query execution leverages the Named Window class to
chunk the input stream into finite portions and continuously updates the results
every 10 minutes over a 1-hour window. RSP-QL allows static and streaming
data to join for enrichment and reasoning.

3 Ontology Modeling

This section presents our efforts in capturing the knowledge for the ACT domain.
The conceptualization is based on a comprehensive study of academic confer-
ences conducted on Twitter. The study aimed to gain insights into the temporal
patterns and content categories associated with tweets about conference events.
Domain Understanding. The tweets on an academic conference span several
months, commencing with early announcements encompassing conference an-
nouncements and the calls for papers. The process then navigates through dis-
tinct phases such as submission reminders, review notifications, and post-paper
acceptance tweets, culminating in the conference period marked by active sharing
of presentations and experiences. Post-conference engagement also occurs as the
community reflects on the event’s impact, while random tweets inject diversity,
including keynote announcements, discussions on trends, and user insights. The
tweets around an Academic Conference Event (ACE) span over several months
with different data peaks at different time intervals, similar to real-world scenar-
ios. Moreover, the cyclic nature of conferences, occurring regularly every year,
further helps simulate real-world scenarios.

We categorized tweets into five main types: Announcements, Reminders, No-
tifications, Insights, and Others. Table 2 indicates different categorizations and
the types of tweets that fall into each category. Announcements, reminders, no-
tifications, and insights follow a structured sequence, while the Others category
encompasses tweets that may occur randomly. Such a categorization clarifies

1 SELECT ?organization ?domain (COUNT(?paper) AS ?publications)

2 INTERSECT(?t,"[2023-01-01,2023-12-31]")

3 WHERE {

4 ?paper :hasAuthor ?author; ?author :hasAffiliation ?organization. | t.

5 ?paper :hasDomain ?domain.

6 }

7 GROUP BY ?organization ?domain

Listing 1.1: Counting papers published in 2023 with T-SPARQL.
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the data generation algorithm’s flow. Moreover, it sets a basis for extensibility,
allowing easy integration of new categories or templates in the future.

Note that this list is not a comprehensive list of tweet types, and there may be
additional categories, such as tweets expressing disappointment after rejections
or complaints, among others. However, we have included a significant number
of tweet templates that replicate the real-world scenarios described earlier. Our
data generation algorithm is adaptable and can incorporate new templates or
categories (see Section 4) in the future.

We can correlate the tweeting pattern with the concept of ‘Absolute Events’,
as depicted in Figure 1. Three distinct data peaks, each signifying an absolute
event, mark critical junctures like 1) the Early Announcement (EA) encom-
passing the main Conference Announcement (CA) and the first Call for Papers
(CfP), 2) Review Notifications (RN), and 3) the ongoing conference (OC). No-
tably, peaks rise significantly during notification periods, show a small increase
just before the conference, reach their highest point during the event, and grad-
ually decline in the post-conference phase.

Domain Conceptualisation. Our ontologies address temporality by represent-
ing order, eventful timestamps, and duration intervals [26].

The Ordered Time Model captures the relation between absolute events. Indeed,
we can ask CQs such as “Was the call for paper announced before the confer-
ence?” to have a negative (or positive) answer and can be leveraged to test the
temporal consistency of the data.

The Absolute Time Model adds to the previous model the notion of timestamps
and allows a finer grain comparison. In particular, it is possible to ask questions
about trends (cf Section 1), quantify time windows, or compute historical queries
like “How many times, on average, authors write during a conference?”

The Interval Time Model. We adopted this model for the conference (and its
sessions). They are described by start and end dates and duration (e.g., five
days). Such modeling enables asking questions such as “What happened during
ESWC 2024?”, and “What is the session that overlaps with session 3, and is
having the most participation?”.

1 REGISTER STREAM <http://example.org/stream/publications>

2 FROM NAMED WINDOW :W1 ON <stream1> [RANGE PT1H STEP PT10M]

3 SELECT ?organization ?domain (COUNT(?paper) AS ?publications)

4 WHERE {

5 WINDOW :W1 {

6 ?paper :hasAuthor ?author; ?author :hasAffiliation ?organization. | t.

7 ?paper :hasDomain ?domain.

8 }

9 }

10 GROUP BY ?organization ?domain

Listing 1.2: RSP-QL Query to continuously monitor publication activities of
organizations over a window of 1 hour.
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ACE Ontology. We developed four moderate-sized ontologies describing an
ACE, one for each OWL 2 profile (EL, QL, RL, and DL). The ontologies can be
accessed from the GitHub repository8. Each ontology consists of concepts and
properties describing various aspects of academic conferences. The hierarchy
among some classes, including the relations between them, is shown in Figure 2.

Every ontology includes the classes Conference, Organizer, Talks, Manuscr-
ipt, Author, Role, EventMode and Attendee, object properties such as hasAuth-
or, attends, and hasCollaborator and data properties such as hasTitle,
hasLocation, and givesTalkOn. We ensure that the axioms cover all the con-
structs corresponding to a particular OWL 2 profile. In Table 3, we include a
few examples of the axioms in description logics [14] from ACE ontology.

To expedite development, the ACE ontology reuses concepts such as foaf:Pe-
rson and foaf:Organization. We also incorporate concepts such as Student,
and Organization, from OWL2Bench [31], a benchmark based on a university
domain designed for evaluating OWL 2 reasoners.

To demonstrate the syntactic and semantic limitations imposed on different
constructs in each OWL 2 profile, we use the example, Every manuscript has
at least one author. The class Manuscript is added to all the profiles, and the
definition varies slightly (provided below) depending on the OWL 2 profile.

– In OWL 2 EL, Manuscript ≡ ∃hasAuthor.Author, indicating that every
manuscript must have at least one author.

– In OWL 2 QL, where existential restrictions are not allowed in subclass
expressions, Manuscript ⊑ ∃hasAuthor.Author. This definition implies that
when there is at least one author, it is classified as a manuscript.

– In OWL 2 RL, due to the prohibition of existential restrictions in superclass
expressions, the definition is ∃hasAuthor.Author ⊑ Manuscript, which sig-
nifies that when an author exists, it is associated with a manuscript.

– In OWL 2 DL, the definition uses qualified minimum cardinalities, expressed
as Manuscript ≡ ≥ 1 hasAuthor.Author, ensuring that every manuscript
must have at least one author and making the axiom more expressive.

Tweet Ontology. Our ontology development prioritizes modularity for future
scalability and integration. Hence, the ontology that captures the tweet meta-

Tweet Category Before Conference During Conference After Conference

Announcements

Main Conference ▲

-
Best Paper Awards ▲

Call for Papers ▲
Next Conference ▲

Keynotes, Panelists and
Sponsors ▲

Reminders
Submission ●

Upcoming Sessions ● -
Registration ●

Notifications
Accepted Papers ■

Ongoing Sessions ■ -
Schedule Changes ■

Insights
Based on Accepted Papers or

Based on Presentations ✩ Recap and Reflections ✩
Schedule Changes ✩

Others
Excitement for the Conference ◆

Job Postings ◆ Acknowledgement and Gratitude ◆Gratitude for the Grants and
Volunteer Opportunities ◆

Table 2: Overview of Tweet Categories. The shape indicates the category.
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Fig. 2: Partial class/relationship hierarchy in ACE Ontology.

Fig. 3: Other Schemas

data is kept separate from the ACE ontology. This allows for future expansions,
potentially incorporating other social media platforms. The core classes in the
Tweet ontology include UserAccount and Tweet, which are connected via the
object property posts. Each Tweet includes attributes such as dateTimeStamp,
hasHashtags, and mentions of other Twitter users. To capture the relatively
stable but occasionally changing nature of the user’s bio information, we added
the object property hasAffiliation. Additionally, entities from the Tweet and
ACE ontology are linked with OWL2Bench and Location ontologies, such as
Organizations and City, which are considered static background knowledge
for the generated data. Figure 3 illustrates this integration. Note that the loca-
tion of Organizations is defined as City for simplicity, but this will be refined
in the future for more detailed location information.
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4 Data Generation

The data generation is based on several key observations. Firstly, given the inher-
ent diversity in natural language expressions within tweets, multiple variations
of a particular tweet type can exist. For example, when a paper is accepted,
the co-authors might post about it. Despite language differences, the meaning
of the tweet from each of the co-authors would, most likely, remain consistent.
Secondly, despite the brevity of the tweets, each tweet encapsulates significant
implicit information related to the conference, covering multiple entities from
the ontologies. Figure 4 illustrates how multiple tweets of the same type are
mapped to the same RDF Graph, involving several entities, regardless of how
short the tweet is. This mapping approach was leveraged to generate the data.

As shown in Figure 5, the data generation pipeline consists of two steps:
Event Data Generation and Sequence Data Generation. The first step generates
data for the specified number of conference instances. The second step allows
users to create segments of the generated data to simulate different scenarios.

4.1 Event Data Generation

In the first step, we defined several realistic templates for different categories of
tweets (Table 2). These templates act as structured formats for building RDF
graphs. After generating these tweet templates, they are mapped with RDF
triples based on the underlying knowledge. The Twitter templates and their
mappings are on our GitHub repository8.

After establishing the RDF graph structure for each template, we fill in spe-
cific details through instantiation. The data generation process begins with user-
specified conference counts and cycles. For example, if a user requests data for
two conferences and ten cycles, GenACT generates two distinct data directo-
ries, each representing a conference like ER2024 and ISWC2024. Data is orga-
nized within each directory to represent ten cycles, for example, spanning from
ER2014 to ER2024. This structured approach ensures clarity and organization
in the generated dataset.

OWL Construct Involved Axiom

ObjectSomeValuesFrom KeynoteSpeaker ≡ ∃hasRole.KeynoteSpeakerRole
ObjectAllValuesFrom OrganizingCommittee ≡ ∀hasOrganizingCommitteeMember.Organizer

ObjectExactCardinality SingleAuthorPaper ≡ =1hasAuthor.Author
ObjectMaxCardinality ConferencePaper ≡ ≤1 isAcceptedAt.Conference

ObjectMinCardinality Manuscript ≡ ≥1 hasAuthor.Author

ObjectIntersectionOf StudentAuthor ≡ Student ⊓ Author

ObjectComplementOf NonAuthor ≡ ¬Author
SubClassOf Volunteer ⊑ Participant

EquivalentClasses Attendee ≡ Participant

ObjectPropertyChain hasAcceptedPaper o hasAuthor ⊑ hasCoAuthor

Table 3: Examples of TBox axioms from GenACT. OWL Constructs are in
Manchester syntax, and the axioms are written in Description Logics Syntax.
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Fig. 4: Mapping of tweets generated after paper acceptance to RDF Graph

Fig. 5: Data Generation Pipeline. Identical shapes in a sequence denote parti-
tioning by tweet categories (Table 2), while identical colors denote partitioning
by the same type of entity (e.g., Conference, User).

For realistic data generation, the temporal modeling of tweets is essential.
Tweets, generated in chronological order, naturally exhibit temporal relations.
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For example, a tweet announcing a keynote speech or a paper to be presented
typically precedes tweets discussing its content. When instantiating RDF graphs,
we ensure the temporal sequence in our data generation. While we maintain a
sequence in tweet generation, we introduce an element of randomness by gener-
ating tweets in a non-sequential manner. This adds richness to the dataset by
simulating the spontaneity and diversity in real-world social media interactions.
To allow flexibility in generating varying peaks, we use random number genera-
tors to vary the start times of conferences, durations between events, and tweets
within these conferences. It is noteworthy that, akin to users modifying their
bios on Twitter, we also ensure that certain users can update their bios.

We have adopted an approach to enhance efficiency to meet the requirement
of tunable streaming rates for temporal web data. As illustrated in Figure 5,
instead of having all tweets represented as RDF triples in a single file, we have
organized them into separate files for each tweet instance. Specifically, we store
RDF triples corresponding to each tweet in two files, one for the metadata cor-
responding to the tweet (metadata.ttl) and another for the conference-related
information (eventdata.ttl). Storing each tweet’s data in separate files facilitates
quick access to timestamps for specific observations and helps avoid the perfor-
mance issues related to querying a single large file. This method is especially
advantageous for generating diverse sequential data that can be streamed at the
desired rate (see Section 4.2).

4.2 Sequence Data Generation

The generated data can be divided into multiple segments through strategic
partitioning using SPARQL9 queries. This customization enhances the dataset’s
utility for diverse research and analysis purposes.

Partitioning by Attribute. The generated event data offers flexibility by al-
lowing partitioning based on various attributes. Each tweet metadata file cre-
ated in the previous step contains relevant information that can be used to
generate attribute-specific datasets. These attributes include different entities in-
volved in the ACT domain, such as conferences, persons, organizations, research
domains, and conference phases. For instance, querying ?tweetid :isAbout

?conferenceInstance. ?conferenceInstance rdf:type :Conference on the
metadata files, the triples in the corresponding event data file are used to cre-
ate dedicated Conference segments for each ?conferenceInstance. Similarly,
querying the metadata files for ?tweetid :mentions ?userAccount will create
different User segments. Figure 6 shows these two partitions: Conference and
User. The former creates segments for each conference. This facilitates analy-
sis of a conference’s temporal evolution, from the initial announcement to its
conclusion. While these segments are fewer, they encompass a variety of users,
organizations, and related data. Figure 6 shows the mix of tweets within each
conference stream. Partitioning by users results in segments representing the

9https://www.w3.org/TR/sparql11-overview/

https://www.w3.org/TR/sparql11-overview/
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activities of individual users. Although individual user tweet frequency might
be low, user-based segments offer a multitude of interconnections, leading to
potentially complex reasoning tasks. Here, the number of partitions equals the
number of users involved in the conference tweets. It is important to note that
a single user might be involved in multiple conferences and have different roles
within those conferences. Similarly, a single tweet might involve multiple users.
Figure 6 also depicts this user-based partitioning with its inherent challenges
due to the high number of streams and interconnected entities.

Conference Segments User Segments

C1 ▲▲◆●◆●■◆■●■▲✩▲▲✩●●◆✩■✩■✩◆◆—▲▲

C2 ●◆ ■▲✩▲▲✩●●◆▲✩■✩■✩◆◆—▲▲◆●◆●■◆■

.

.

.
Cn ●●◆▲✩■✩■✩◆◆—▲▲◆●◆●■◆■●■▲✩▲▲✩●

U1 ▲——✩—–■—✩—
U2 —-■—✩———◆—
U3 ◆———-■—–◆—-
U4 ■—–▲——-✩——-

.

.

.
Un ——●——◆——–

Fig. 6: Partitioning by Attributes. Different shapes and colors represent different
tweet categories as outlined in Table 2.

Partitioning by Shape. Our data partitioning strategies extend beyond spe-
cific attributes such as conferences and users. The data can also be partitioned
based on its inherent structure, revealing valuable relationships within the event
data. Here, we define and enforce specific structural patterns within data seg-
ments, ensuring that all events within a segment adhere to a consistent form.
This fosters a structured approach to data modeling and analysis [8].

Figure 7 illustrates three common shapes (out of a variety of possible graph
patterns) in our generated data: tree, star, and chain. Tree structures repre-
sent hierarchical relationships, useful for analyzing nested dependencies. Chain
structures model linear events or interactions, which is ideal for chronological
analysis. Star structures centralize around a single node with multiple connected
entities. This is useful for hub-and-spoke models like social media interactions
where a central user connects with many others.

5 Discussion

Patterns and Peaks Analysis. Figure 8 illustrates an example of the tweet
volume patterns and peaks generated per week for five conferences. It demon-
strates that even if each conference displays three distinct peaks individually,
merging the data into a single stream leads to diverse peaks and volumes. Thus
providing insights into the dynamic nature of the events and their usefulness in
mimicking different real-world activities for various analytical purposes.
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Fig. 7: Partitioning by Shapes

Functional Utility. To demonstrate GenACT’s utility in evaluating reasoning
systems, we executed two queries corresponding to CQ 3: Monitoring Publica-
tion Activities and CQ 7: Global Research Focus (cf. Table 1), on two reasoners:
CSparql27 and RDFox[22]. CSparql2 is a stream reasoner based on RSP4J [33],
while RDFox is a highly scalable, parallelized, in-memory RDF store support-
ing incremental reasoning. We employed pre-existing code available at 10. Our
evaluations were conducted on a system equipped with an Intel(R) Core(TM)
i7-8550U CPU @ 1.80GHz and 8 GB RAM. CQ 7 is a variant of CQ 3 (refer
to Listings 1.1 and 1.2) with an additional basic graph pattern in the query:
?organization :hasLocation ?location. This query utilizes static background
data about locations to respond. Due to reasoners’ limitations in performing
OWL-based reasoning, we excluded triples involving OWL constructs from the
queries, such as ?paper rdf:type :ConferencePaper, which involves existen-
tial restrictions and cardinalities depending on the selected ACE ontology profile.
The evaluation outcomes, as illustrated in Figure 9, reveal that the generated
data is effective in identifying variations in performance. It is important to note
that our focus here is not on performance evaluation but on demonstrating the

10https://github.com/SRrepo

Fig. 8: Tweet volume patterns and peaks for five conferences: individual confer-
ence streams (left) and merged stream (right).

https://github.com/SRrepo
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Fig. 9: Key performance indicators: Latency (ms) and Memory Consumed (GB),
for the queries corresponding to CQs 3 and 7, for different numbers of confer-
ences.

utility of the generated data in evaluating reasoning systems. Detailed results
will be added to the GitHub repository8.

6 Related Work

Bonifati et al. [5] discuss the efforts related to graph data generation in detail.
They identified 35 data generators classified based on the domain (Social Media,
Academic, e-commerce, or User Defined), their generation capabilities (fixed,
schema-driven, extracted), and data distribution (and other dimensions out of
the scope of this work). Being GenAct, a fixed, academic, and social media-based
RDF data generator that follows realistic Twitter data, we discuss its relation
with the closest ones selected by such survey and additional works published
afterward. To this extent, we divide the selected generators into the following
sub-areas: (Knowledge) Graph Generation and time-related data generation.
Linked Data. In the Semantic Web context, data generation is commonly as-
sociated with benchmarking. WatDiv [2] focuses on stress testing, i.e., it is
workload-oriented. It provides a data generator that generates scalable datasets
according to the provided schema. Temporality, dynamicity, and timeliness are
not considered in the dataset or the workload. The SP2Bench [28] is based on
the DBLP dataset. The generated RDF graph follows the same data distribu-
tion as the original DBLP dataset, mimicking entity relations and correlations.
A fixed seed ensures that the data generation process is deterministic. The final
data contains a temporal dimension related to the publication date. However,
this is not prioritized in the generation or related queries. LinkGen [16] can
generate data in RDF for a given vocabulary. It supports Zipf’s power-law and
Gaussian distributions for entity generation. Being agnostic to the vocabulary,
LinkGen could be tuned to generate temporal data. Moreover, the generation
can be performed in streaming. Nevertheless, it does not support stream parti-
tioning, nor can it describe absolute events in the vocabulary. In future work,
we plan to compare the efficiency of GenAct generation with LinkGen.
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Streaming Linked Data.Among the numerous benchmarks [25,35,10,23,17,32,1,9],
only LSBench, SLUBM, and LASS provide a way to stress stream reasoning
systems and data generators. The former two approach the generation process
naively, considering a single data stream. While LSBench shares GenAct’s do-
main of social media and the static-streaming data duality, it lacks accurate
Twitter templates and realistic data distribution. On the other hand, SLUBM
streams LUBM [12] individuals without considering data distribution or parti-
tioning. Additionally, RSPLab [34], a framework for testing RDF stream pro-
cessing systems, incorporates a solution for generating data based on Triple-
Wave [19]. Although RSPLab claims the ability to study the RSP response to
change in the input frequency, such a feature does not appear in the code.
Reasoning. The benchmarks designed for highly expressive ontology reason-
ers [12,18,31] are limited to static data, making them unsuitable for mimicking
domains that require reasoning over temporality, dynamicity, and timeliness.
This latter gap was attempted to be bridged by RSP benchmarks, like LASS
1.0 [32], but its adoption seems minimal. PyGraft [15] is a tool for KG gener-
ation written in Python. It is domain-agnostic but supports a subset of OWL
2 and RDF language features. Data generation is pipelined with a DL reasoner
to ensure consistency. Although PyGraft allows users to implement their own
conceptualization, it does not include any explicit temporal feature nor consider
dynamicity and timeliness, making it unsuitable for studying evolving Knowl-
edge Graphs. GDDx [11] is a schema-driven graph generator based on Extended
Graph Differential Dependencies, i.e., an extension of graph entity/differential
dependencies that represent formal constraints for graph data. However, it can-
not generate domain-agnostic schemas, so an existing schema is required as in-
put.

7 Conclusion

This paper presents GenACT, a temporal web data generator based on ACE that
can generate data that has temporal, dynamic, and timeliness characteristics.
These are critical for evaluating systems on KG evolution and stream reasoning,
two areas that do not have realistic and large, publicly available data. GenACT
comes with a novel ontology for each of the OWL 2 profiles, allowing it to stress
different reasoning systems. The generation process allows for the creation of
different data segments using SPARQL-based partitioning strategies, allowing
users to define custom partitioning strategies.

Our synthetic data generation approach emphasizes adaptability across mul-
tiple dimensions. Future plans include expanding to platforms like Reddit and
LinkedIn, incorporating the Shapes Constraint Language (SHACL)11 for en-
forcing temporal constraints and data validation and extending data generation
beyond RDF, e.g., Property Graphs or Datalog, to encourage the benchmarking
of expressive reasoners [4] and graph stream processing languages [27].

11https://www.w3.org/TR/shacl/

https://www.w3.org/TR/shacl/
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